

ZEP

Technology Platform
Zero Emission Fossil Fuel Power Plants

ZEP The Zero Emission Power Plant Technolgy Platform

MIT, Cambridge, 1st of November 2006

Lars Strömberg

Vattenfall AB

Stockholm/Berlin

The ZEP

What is the ZEP

What is the ZEP?

The Zero Emission Platform is an initiative within the European Union to get a common view on

- Present status of the CCS technology
- Examine the GAPs and hinders to develop CCS to a commercially available option in 2020 and beyond
- Create a strategic research agenda
- Define a deployment route
- The work has been performed by more than 100 persons nominated from different parts of society
- The result is presented in form of
 - Reports from five different working groups
 - A Strategic Research Agenda
 - A Strategic Deployment Document

The Working Groups

	Working Group	Leads	
1	Capture and Power Plant Technology	Lars Stromberg, Vattenfall Johannes Heithoff, RWE Anderas Pistauer, Siemens	
2	CO ₂ Capture and Use	Tore Torp, Statoil Niels-Peter Christenssen, GEUS	
3	Infrastructure and Environment	Graeme Sweeney, Shell Paul Friswold, Bellona	
4	Market Regulation and Policies	Fransoise Gigier, EdF Pietro Di Zanno, Air Liquide	
5	Communication and Public Acceptance	Philippe Lacour-Gayet, Schlumberger Gabriela von Goerne, Greenpeace	

The Groups

The working groups have worked with the perspectives of different stakeholders. In all 105 stakeholders from:

- The research community
- NGOs
- Equipment manufacturers
- Oil and gas industry
- Power industry

The results

Content of the WG1 report

- 1. Capture and Power plant technology overview
- 2. Benchmarking the technologies
- 3. Market potential for different technologies
- 4. Overall development goals by 2020 and after 2020
- 5. The R&D Gaps
 - 1. Power plant efficiency increase
 - Post combustion capture
 - 3. Pre combustion capture
 - 4. Oxyfuel combustion
 - 5. Emerging and new capture technologies
- 6. The way forward. Route Map and time frame
- 7. Barriers for deployment and actions to remove them
- 8. Conclusions and recommendations for action

Key points - Technology Options

Three technologies seems capable to fulfil the primary target to 2020

- All largely contain known technology and components
- All need optimization, scale up and process integration
- Power process efficiency increase is always a supporting activity

Parallel R&D routes needed

- Development of the three main technologies for the 2020 target
 - Several large scale pilot and demonstration plants, optimized, with full process integration
 - Supporting R&D to reach lower costs, increase process efficiency and achieve better availability
- R&D for new and emerging technologies for deployment after 2020
 - Many routes to examine
 - Assessment to prioritize the technologies capable to overtake the leading role from any of the three main candidates.

 Generally known technology and components

Process integration, optimization and scale-up

 The last steps in the development process are long, very expensive and need support

Benchmark

Financial and other boundary conditions		Natural gas	Hard coal	Lignite		
Fuel price	€/GJ (LHV)	5,8	2,3	1,1		
Plant size	MWe (Ref)	420	556	920		
Specific investment	€/MWe (Ref)	471	1058	1278		
Common input						
Life time Years		25				
Wacc	%	8				

Benchmark

Electricity generation cost for large power plants in operation by 2020 (ZEP WG1)

Benchmark

Avoidance cost for large power plants in operation by 2020 (ZEP WG1)

Barriers

- General barriers
 - Create a worldwide market for CCS
 - Commercial availability to storage facilities
 - Availability of educated people, in universities, administration and industry
- Technical barriers
- Infrastructural barriers
- Institutional and organizational barriers
- Regulatory and legal barriers
 - Permissions and acceptability

• ETS 17

Action to remove the barriers

- Facilitate research and development work in identified areas.
 - Concentrated efforts on prospective technologies, both on an integrated level and basic R&D for support
- Create a level playground concerning market, and commercial framework for the industry
- Create a unified legislation, update regulations, standards, guidelines and permission processes to include CCS
- Make the individuals involved in legislative activities, permission processes, and the public, knowledgeable about the technology.

WG1 Roadmap

Necessary to enable commercial application by 2020

R&D to realize next generation **R&D** to create future more optimal solutions

Targets

Avoidance cost <20€ton

Reduced investments

Reduced O&M costs

Minimized energy requirements

High availability

Sustainable fossil fuel power generation

Several work

•Demonstrate in full scale for coal/gas

System simplification and cost reduction

Improved solvents

*Develop new solvent based capture systems

Establish European solvent system vendor

Capitalise on R&D infrastructure

Non-water based solvents Break through concepts Highly integrated schemes Sorbents and systems

Calcination/carbonation

*Antisublimation

Membranes

Demonstration of full scale plants for ZEIGCC/ZEIRCC

System simplification and cost reduction

 Develop designated **H2** combustion turbines

* Undiluted Low NOx high H2 combustors

* New gasification schemes

* New reforming schemes

* Improved hot gas clean

* H2 membranes

Micro-channel reforming

* SER (Sorbent Enhanced Reforming)

* CLC reforming

* Integrated H2 production utilising new reactor types,

* Demonstrate at large scale for coal and gas

* Gain basic experience in the design of such plants

* Build designated oxyfuel turbine system

* Economy of scale for Cryogenic O2 prod.

* Improve radiation/heat transfer tools

Oxygen Sorbents

High temp. O₂ prod. High temperature HEX

New integrated reactor systems

*Step change in mixed flow turbine dvs (100= °C)

*New control system logics/

*CLC (Chemical Looping Combustion) for coal

* New cycles

Post Combustion

Pre-Combustion

industrial plants with CCS put to

2020 + +

2006 2010

SINTEF-2006

Working group 1

SRA (Charles Soothill, Alstom) SDD (Gardiner Hill, BP)

Strategic Research Agenda

- CO₂-The Global Challenge
- The Key Questions
- SRA-key points
 - Technology Options
 - Storage & Transport
 - Environment and the Public
- The R&D Roadmap
- Key Recommendations
- The Way forward

The Global Challenge

CCS, together with improved energy conversion efficiency, is a near-term solution to reducing CO₂ emissions on a massive scale. Its rapid deployment will help avoid the catastrophic consequences of climate change.

But:- we must <u>demonstrate</u>:-

- Reduced CO2 capture and plant costs
- The safety of CO2 geological storage

The Key questions

- 1. Can CO2 from fossil plant be captured effectively?
- 2. How can captured CO2 be safely transported?
- 3. Can the capture and long term storage of CO2 be achieved at reasonable cost?
- 4. Is CO2 storage safe?

The SRA proposes RD & D priorities and a technology roadmap to address these issues

Storage & transport -key points

- 1. Demonstration of long term <u>safety</u> and monitoring is vital for CO2 storage.
- 2. Numerous storage options exist but room for more innovation and better mapping of capacity in EU.
- 3. Optimise the benefits & use of CO2 (EOR,NGPS)
- 4. Transport options are well understood, but <u>safe</u>, <u>efficient & cost effective</u> routes must be identified

Environment & Public Perception -key points

- 1. Adopt <u>zero tolerance</u> to major CO2 leaks and establish mitigation plans.
- 2. Determine impact on the full ecosystem
- 3. Develop <u>advanced</u> studies & models for CO2 infrastructure.
- 4. Transport options are well understood, but <u>safe</u>, <u>efficient & cost effective</u> routes must be identified
- 5. Public acceptance of CCS is prerequisite and will be addressed

Building the Road to Success

The Key Recommendations

- 1. Implement 10-12 integrated, large-scale CCS demonstration projects Europe-wide
- Develop novel underpinning concepts for demonstration by 2010-2015 and implementation beyond 2020.
- 3. Support long-term exploratory R&D in advanced, innovative concepts for implementation of next-generation technology by 2050
- Maximising co-operation at national, European and international level
- 5. Strengthen and accelerate R&D priorities to support the Strategic Deployment

ZEP on the web

www.zero-emissionplatform.eu

Vattenfalls CO₂ free power plant project

Roadmap to realization - Pilot Plant and Demo Plant

Vattenfall's Roadmap to realization

The demonstration project time line: Capture & Storage

Pilot Plant Lay out

Time Schedule

Schwarze Pumpe power plant

Vattenfall oxyfuel pilot plant at Schwarze Pumpe Power station

Computer simulation of the new Vattenfall Boxberg R unit 660 MW- lignite

Computer simulation of Vattenfall's new units in Hamburg 2 x 835 MW hard coal

