CO$_2$ Capture by Aqueous Absorption/Stripping

Presented at MIT Carbon Sequestration Forum VII

By Gary T. Rochelle

Department of Chemical Engineering

The University of Texas at Austin

October 31, 2006

rochelle@che.utexas.edu
Outline

• Absorption/Stripping: THE technology
• MEA: not a bad solvent alternative
 – Stripper Energy favored by greater ΔH_{abs}
 – Mass Transfer Requires Fast Kinetics
 – MEA Makeup and Corrosion Manageable
• Optimized systems approach 1.5 x ideal W
• Critical Opportunities & Needs for R, D, D, & D
• Now the time to plan Demo and Deployment
Capture by Aqueous Absorption
The Critical Technology

• For Coal Combustion
• in “existing” power plants
• that are an important, growing source of CO₂.
• Aqueous Absorption/Stripping is preferred
• because it is tail-end technology
What is the CO₂ Capture Market?

Coal Dominates CO₂ Emissions From Fossil Power Generation
As Percent of Coal-fired Generation Grows to 59% (2030)

75% of all coal related CO₂ production from existing coal-fired power generation.
TXU: an extreme example

• Current TXU CO$_2$ emissions
 – 60 MM ton/y from 16 plants
• 11 x 800 MW fossil plants in the next 5 years
 – 100 million ton CO$_2$/y
• Good for Texas and TXU
 – Capacity for growth
 – Replace expensive gas-fired capacity
 – TXU capital from deregulation
• Inconceivable in the next 5 years
 – IGCC, Oxycombustion
 – CO$_2$ Capture by absorption/stripping
• The prime market for retrofit CO$_2$ capture
Absorption/stripping = The technology

- Near Commercial
- Tail End Technology for Existing Plants
 - Oxycombustion and gasification are not.
- Expensive in $$ and energy
- By analogy to limestone slurry scrubbing
 - Expect significant evolutionary improvements
 - Do not expect major cost & energy reductions
 - Do not waste resources on step change R&D
System for CO₂ Sequestration

Coal → Boiler → ESP → FGD

10 atm stm

CaCO₃

3 atm stm

CaSO₄

Flyash

Abs/Str

Turbines

150 atm CO₂

Net Power

Disposal Well
MEA Absorption/Simple Stripping

Absorb
40°C
1 atm

Absorb

CO₂

12% CO₂
5% O₂
7% H₂O
40°C

SO₂, HCl, NO

Strip
117°C
2 atm

Strip

3 atm

Steam

CO₂

ΔT=5°C

Lean

Rich

ΔT=5°C

H₂O

Purge to Reclaim

30% MEA
(Monoethanolamine)
Aqueous Abs/Str: Near commercial

– 100’s of plants for treating H₂ & natural gas
 • MEA and other amine solvents
 • No oxygen

– 10’s of plants with combustion of natural gas
 • Variable oxygen, little SO₂
 • Fluor, 30% MEA, 80 MW gas, 15% O₂
 • MHI, KS-1, 30 MW, <2% O₂

– A few plants with coal combustion
 • Abb-Lummus, 20% MEA, 40 MW
 • Fluor, 30% MEA, 3 small pilots
 • CASTOR, 30% MEA, 2.5 MW pilot
 • MHI, KS-1, <1 MW pilot
Tail End Technology Ideal for Development, Demonstration, & Deployment

- Low risk
 - Independent, separable, add-on systems
 - Allows reliable operation of the existing plant
 - Failures impact only Capture and Sequestration
- Low cost & less calendar time
 - Develop and demonstrate with add-on systems
 - Not integrated power systems as with IGCC
 - Reduced capital cost and time
 - Resolve problems in small pilots with real gas
 - Demo Full-scale absorbers with 100 MW gas
 - Ultimately 500 MW absorbers
Other Solutions for Existing Coal Plants

- **Oxy-Combustion**
 - O₂ plant gives equivalent energy consumption
 - Gas recycle, boiler modification for high CO₂
 - Gas cleanup, compression including air leaks

- **Coal Gasification**
 - Remove CO₂ and burn H₂ in existing boiler
 - O₂ plant, complex gasifier, cleanup, CO₂ removal
 - H₂ more valuable in new combined cycle

- **Neither is Tail end**
 - Require higher development cost, time, and risk
Practical Problems

• Energy = 25-35% of power plant output
 – 22.5%, Low P stm, 30-50% of stm flow
 – 7%, CO₂ Compression
 – 3.5%, Gas pressure drop
 – $42/tonne CO₂ (0.7 MWh/CO₂ x $60/MWhr)

• Capital Cost $500/kw
 – Absorbers same diameter as FGD, 50 ft packing
 – Strippers somewhat smaller
 – Compressors
 – $20/tonne CO₂ for capital charges & maint

• Amine degradation/environmental impact
 – $1-5/tonne CO₂
Analogy to CaCO$_3$ slurry scrubbing

- 1970 “Commercial” starting point
 - Only process “immediately” available
 - “Inappropriate” for government support
- Starting point was “too expensive”
 - Environmentally messy, solid waste unattractive
 - Initial applications even more expensive
 - Cost decreased with experience
- Alternative developments heavily funded
 - Regenerable FGD processes – too complex
 - Coal gasif/combined cycle – not tail end
 - Fluidized bed combustion – not tail end
- 2006 Commercial Generic Process
Aqueous Solvent Alternatives
MEA is hard to beat

• Stripper Energy Requirement
• Mass Transfer Rates
• Makeup and Corrosion
Carbonate & Tertiary/Hindered Amines

\[
\begin{align*}
\text{Carbonate} & \quad \text{Bicarbonate} \\
\text{CO}_3^- + \text{CO}_2 + \text{H}_2\text{O} & \leftrightarrow 2 \text{HCO}_3^- & 20 \text{ kJ/gmol} \\
\text{very slow} &
\end{align*}
\]

\[
\begin{align*}
\text{HO-CH}_2\text{-CH}_2\text{-N-CH}_2\text{-CH}_2\text{-OH} & \leftrightarrow \text{MDEAH}^+ + \text{HCO}_3^- \\
\text{CH}_3 & \quad 60 \text{ kJ/gmol, slow} \\
\text{Methyldiethanolamine (MDEA)} &
\end{align*}
\]

\[
\begin{align*}
\text{HO-CH}_2\text{-CH}_2\text{-NH}_2 + \text{CO}_2 & \leftrightarrow \text{AMPH}^+ + \text{HCO}_3^- \\
\text{CH}_3 & \quad 60 \text{ kJ/gmol, slow} \\
\text{2-Aminomethylpropanolamine (AMP, KS-1(?))} &
\end{align*}
\]
Primary and Secondary Amines
60-85 kJ/gmol, fast

2 HO-CH₂-CH₂-NH₂ + CO₂ ↔ HO-CH₂-CH₂-NH-COO⁻ + MEAH⁺
Monoethanolamine (MEA)
MEA Carbamate (MEACOO⁻)

2 NH₃ + CO₂ ↔ NH₂-COO⁻ + NH₄⁺
Ammonia

CH₂-CH₂
HN \[\langle\]
\[\rangle\]
NH + CO₂ ↔ +HPZ-COO⁻
Piperazine (PZ)
Components of Stripper Heat Duty
(mol stm/mol CO₂)

\[S_{\text{rxn}} = \frac{H_{CO₂}}{H_{H₂O}} \]

\[S_{H₂O} = \left[\frac{H_{2O}}{CO_2} \right]_{\text{ABS}} EXP \left[-\frac{(H_{CO₂} - H_{H₂O})}{R} \left(\frac{1}{T_{\text{ABS}}} - \frac{1}{T_{\text{STRIP}}} \right) \right] \]

\[S_{\text{sens}} = \frac{C_p \left(T_{S,\text{Bot}} - T_{S,\text{Feed}} \right)}{H_{H₂O} A_T \Delta L \text{dg}} \]
Total Equivalent Work

\[W = W_{eq} + W_{\text{comp}} \]

\[W_{eq} = 0.75Q_{\text{reb}} \frac{T_{\text{reb}} + 10 - 40}{T_{\text{reb}} + 10 + 273} \]

\[W_{\text{comp}} = RT \ln \left(\frac{100 \text{ atm}}{P_{\text{CO}_2} + P_{\text{H}_2\text{O}}} \right) \]
Total Equivalent Work for Generic Solvents
(Rich $P_{CO_2}^* = 2.5$ kPa at 40°C, $\Delta T = 10°C$)

Equivalent Work (kcal/gmol) vs. ΔH_{des} (kcal/gmol)

- Stripper at 1.6 atm
- Stripper at 0.3 atm
Mass Transfer with Fast Reaction

\[
\text{CO}_2 + 2\text{MEA} = \text{MEACOO}^- + \text{MEAH}^+
\]
Mass Transfer with Fast Reaction

\[D_{CO_2} \frac{\partial^2 [CO_2]}{\partial x^2} - k_2 [Am] [CO_2] = 0 \]

\[N_{CO_2} = \frac{\sqrt{D_{CO_2} k_2 [Am]}}{H_{CO_2}} (P_{CO_2,i} - P_{CO_2,b}^*) \]
\[N_{CO_2} = k_g' (P_{CO_2,i} - P_{CO_2,b}^*) \]
Mass Transfer with Reaction in Wetted Wall Column

normalized flux (mol/Pa-cm\(^2\)-s)

Normalized flux vs \(P_{CO_2}^*\) (Pa)

- 5.0 M MEA
- 3.6 m K\(^+\)/0.6 m PZ
- 6.2 m K\(^+\)/1.2 m PZ
- 3.6 m K\(^+\)/0.0 m PZ

Conc. K\(^+\)/PZ
Reagent Energy Properties

<table>
<thead>
<tr>
<th>Reagent</th>
<th>ΔH_{abs} (kJ/gmol)</th>
<th>k_2 at 25°C (M$^{-1}$s$^{-1}$)</th>
<th>Reagent m</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEA</td>
<td>84</td>
<td>6e3</td>
<td>7</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>60</td>
<td>0.35e3</td>
<td>10</td>
</tr>
<tr>
<td>PZ</td>
<td>84</td>
<td>100e3</td>
<td>2</td>
</tr>
<tr>
<td>MDEA</td>
<td>60</td>
<td>0.005e3</td>
<td>6</td>
</tr>
<tr>
<td>AMP</td>
<td>60</td>
<td>0.6e3</td>
<td>6</td>
</tr>
<tr>
<td>K$_2$CO$_3$</td>
<td>20</td>
<td>0.05e3</td>
<td>5</td>
</tr>
</tbody>
</table>
MEA Makeup & Corrosion

- **Degradation**
 - MEA Oxidizes to NH₃, aldehydes, etc
 - MEA Polymerizes at Stripper T
 - Optimize operating conditions, add inhibitors
 - Reclaim by evaporation to remove SO₄²⁻, NO₃⁻, Cl⁻, etc.

- **Volatility**
 - Use Absorber Wash Section

- **Corrosion**
 - Minimize Degradation
 - Add Corrosion inhibitors such as Cu⁺⁺
 - Use Stainless Steel, FRP
Reagent Properties Affecting Makeup

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Cost $/lbmol</th>
<th>$P_{amine, 40C} \text{ atm x } 10^3$</th>
<th>Degradation</th>
<th>Corrosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEA</td>
<td>40</td>
<td>0.1</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>5</td>
<td>200</td>
<td>None</td>
<td>High</td>
</tr>
<tr>
<td>PZ</td>
<td>300</td>
<td>0.1</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>MDEA</td>
<td>300</td>
<td>0.003</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>AMP</td>
<td>500</td>
<td>≈ 0.03</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>K$_2$CO$_3$</td>
<td>40</td>
<td>0</td>
<td>None</td>
<td>High</td>
</tr>
</tbody>
</table>
Flowsheet Enhancements

• Absorber
 – Direct Contact Cooling & Intercooling
 • To get lower T
 – Split feed – to enhance reversibility

• Stripper
 – Minimum exchanger approach T
 – Internal Exchange
 – Multistage Flash, Multieffect Stripper
 – Multipressure, Matrix,
 – Vapor Recompression
Energy for Separation & Compression to 10 MPa

\[W_{eq} \text{ of power production} = 150 \text{ kJ/gmol CO}_2 \]

<table>
<thead>
<tr>
<th>Separation Method</th>
<th>(W_{sep})</th>
<th>(W_{comp})</th>
<th>Total (W_{eq})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal Sep., (40(^\circ)C, 100 kPa) Isothermal Comp.</td>
<td>7.3</td>
<td>10.8</td>
<td>18.1</td>
</tr>
<tr>
<td>Ideal Membrane (40(^\circ)C) 75% ad. comp. in 5 stages</td>
<td>11.6</td>
<td>16.8</td>
<td>28.4</td>
</tr>
<tr>
<td>Baseline (7m MEA, 10(^\circ)C, 160 kPa)</td>
<td>20.7</td>
<td>13.8</td>
<td>34.5</td>
</tr>
<tr>
<td>Matrix (MDEA/PZ)</td>
<td>14.6</td>
<td>11.6</td>
<td>26.2</td>
</tr>
</tbody>
</table>
Needs for Capture Deployment

• Large Absorbers: different from FGD
 – Countercurrent Gas/liquid Distribution
 • 35 gal/mcf
 – Pressure drop
 – Capital cost of internals
 – Test and demonstrate at 100+MW

• Steam integration
 – Control systems for load following
 – Test at 100+MW

• Environmental impact & losses of solvent
 – Long term test at 1 MW
Opportunities for Capture R&D

• Better Solvents
 – Faster CO$_2$ Transfer: Blends with PZ, etc.
 – Greater Capacity – MEA/PZ, MDEA/PZ
 – Oxygen scavengers/Oxidation inhibitors

• Better Processes
 – Matrix, split feed
 – Reclaiming by CaSO$_4$/K$_2$SO$_4$ Precipitation

• Better contacting
 – Packing to get G/L area
Deployment Schedule

– 2007 - 0.5 MW pilot plant on real flue gas
 Demonstrate solvent stability & materials
– 2008 - 5 MW integrated pilot plant
 Compressor/stripper concepts
– 2010 – 100 MW Integrated module
 Energy integration and absorber design
– 2012 – 800 MW full-scale on CaCO$_3$
 Energy, multitrain, operation
– 2015 – Deployment on all plants
Conclusions

• Absorption/stripping is THE technology for existing coal-fired power plants
 – Expect 15-30% reduction in cost and energy
• The solvent should evolve from MEA
 – High ΔH, fast rate, high capacity, cheap reagent
• Process & contactor enhancements expected
• Now time to plan technology demonstrations