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Abstract 
 

The need to address climate change has gained political momentum, and Carbon Capture 
and Storage (CCS) is a technology that is seen as being feasible for the mitigation of 
carbon dioxide emissions.  However, there is considerable uncertainty that is present in 
our understanding of the behavior of CO2 that is injected into the sub-surface. 
 
In this work, uncertainty analysis is performed using Monte Carlo simulations for 
capacity estimates and leakage potential for a saline aquifer. Six geologic parameters are 
treated as uncertain: porosity, irreducible water saturation, the endpoint relative 
permeability of CO2, residual gas saturation, viscosity of water, and viscosity of the brine.  
 
The results of the simulations for capacity indicate that there is a large uncertainty in 
capacity estimates, and that evaluating the model at using the mean values of the 
individual parameters does not give the same result as the mean of the distribution of 
capacity estimates. Sensitivity analysis shows that the two parameters that contribute the 
most to the uncertainty in estimates are the residual gas saturation and the endpoint 
relative permeability of CO2. 
 
The results for the leakage simulation suggest that while there is a non-zero probability of 
leakage, the cumulative amount of CO2 that leaks is on the order of fractions of a percent 
of the total injected volume, suggesting that essentially all the CO2 is trapped. 
Additionally, the time when leakage begins is on the order of magnitude of thousands of 
years, indicating that CCS has the potential to be a safe carbon mitigation option. 
 
Any development of regulation of geologic storage and relevant policies should take 
uncertainty into consideration. Better understanding of the uncertainty in the science of 
geologic storage can influence the areas of further research, and improve the accuracy of 
models that are being used. Incorporating uncertainty analysis into regulatory 
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requirements for site characterization will provide better oversight and management of 
injection activities. With the proper management and monitoring of sites, the 
establishment of proper liability regimes, accounting rules and compensation mechanisms 
for leakage, geologic storage can be a safe and effective carbon mitigation tool to combat 
climate change. 
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Chapter 1: Introduction and Background 

1.1 The Climate Crisis and the need for quick action 

In the last decade, there has been a large effort from the scientific community to stress the 

importance of reducing carbon dioxide emissions to counter climate change. In its most 

recent report, the Intergovernmental Panel on Climate Change (IPCC) provided extensive 

scientific research and results from models indicating that that there has been a rise in 

global mean temperatures and ‘that the warming of the climate system is unequivocal’. 

Additionally, it asserts that much of the temperature rise since “the mid-20th Century is 

very likely due to the observed increase in anthropogenic GHG concentrations.’ (Alley et 

al., 2007) 

 

The recognition of climate change as an imminent global crisis that needs to be addressed 

quickly has, in recent years, moved away from discussions in the academic and scientific 

arena to the public sphere. Policy makers, businesses and industries have acknowledged 

that carbon mitigation technology is a necessity to prevent further damage caused by 

 11



anthropogenic greenhouse gas emissions, and there has been significantly increased 

reporting in the news media about climate change. 

 

The direct linkage of carbon dioxide emissions with energy use and economic activity 

has turned the debate into one where global economic development is directly in 

competition with efforts to curb emissions through policy. However, with the recent 

change in administration in the United States, the commitment to finding solutions to 

climate change have been placed high on the agenda, and it remains to be seen how 

seemingly competing objectives of reducing emissions and increasing economic activity 

will be resolved. 

 

In the Fourth Assessment report of the IPCC, Carbon Capture and Storage (CCS) 

technologies are referred to as the only way the continued use of fossil fuels can be 

‘environmentally sustainable’ (Alley et al., 2007). While renewable energy sources are 

touted as being the long-term solution to the emissions problem, issues such as cost, 

intermittency and energy storage provide challenges for wide scale deployment. CCS is 

often thought of as a transitional technology, which allows for the continued use of fossil 

fuels, but without the increase in GHG emissions. However, CCS technology itself has its 

own issues of scale and deployment that are yet to be addressed. While there are a 

number of CCS projects that are operational worldwide, no CCS projects have been 

completed in the United States that demonstrate the technology in a power plant setting. 

  

 Additionally, apart from the technological needs to make CCS viable, clear regulations 

are required particularly for the underground storage of carbon dioxide, the component of 

the process with which there is the least experience. Storage raises the most concern 

amongst critics of CCS because of the potential impacts to health and environment that 

could arise. The lack of experience, as well as the characteristics of geologic storage 

raises multiple issues where there is considerable uncertainty, which is the focus of this 

work.  

 

 12



The uncertainties related to geologic storage have many different dimensions, most 

importantly not knowing how a large quantity of CO2 injected underground will travel 

and behave over time. The actual amount of CO2 that can be stored underground is also 

uncertain, because of how little is known about the subsurface and the properties of the 

rocks into which the CO2 may be injected. 

 

The implications of these uncertainties are important from both a technical and a policy 

perspective. From a technical point of view, it is important to understand how much a 

certain reservoir can safely contain before the additional injection of material may 

damage the storage site. It is also important to characterize how far underground the CO2 

may travel so that it can be monitored and verified accurately. This is important from a 

regulatory standpoint, where requirements for siting a geologic storage site would require 

such analysis. 

 

From a policy point of view, the uncertainties around both capacity and leakage are 

important to consider. Having a realistic estimate of capacity would allow for setting an 

attainable target for the level of carbon mitigation to be achieved through CCS. 

Additionally, with storage, the issues of permanence and leakage rates are also important, 

as they are indicators of the efficacy of CCS as a long-term solution to the climate 

problem. By being able to quantify leakage rates and the time frame of any leakage that 

may occur, the relevant policy can be designed, since a possibility of leakage within 50 

years would require a much different set of regulations than leakage in 1000 years after 

injection. 

1.2 Geologic Storage of Carbon Dioxide 

Geologic storage of carbon dioxide refers to the injection of carbon dioxide into selected 

storage sites either in the subsurface or in the ocean. In the subsurface, the CO2 can be 

stored in different underground formations that have porous rock. These include saline 

aquifers, depleted oil and gas reservoirs and unmineable coal seams. Of the three, saline 

aquifers are regarded as having the largest capacity for storage.  The U.S. Department of 

Energy’s Carbon Sequestration Atlas for the United States and Canada estimates that 

 13



between 3,297 and 12,618 billion metric tons of CO2 can be stored in saline aquifers on 

the continent alone (DOE, 2008). A study by the EPA on the Cost Analysis of Geologic 

Storage indicates that up to ‘88.6 percent of the capacity for CO2 injection for geologic 

storage is in deep saline formations’ (EPA, 2008). This thesis therefore restricts its 

analysis and discussion to storage in saline aquifers, and the model, described in section 

2.1, is only applicable to saline aquifers.  

 

When CO2 is injected into the porous rock of a formation, there are multiple physical 

phenomena that allow it to remain trapped in the rock. Suitable formations are regarded 

as those 800m below the surface, so that the increased pressure due to the depth means 

that the CO2 is in a supercritical phase. Apart from the rock that it is injected into being 

porous and able to store the CO2, there must also be a layer of impermeable rock, the cap 

rock, on top of the formation to ensure that the CO2  does not rise through the rock layers 

and leak through to the surface.  

There are four trapping mechanisms that contribute to the storage of CO2 in a site (fig 1): 

1. Physical: structural and stratigraphic trapping 

2. Physical: residual CO2 trapping 

3. Geochemical: solubility trapping 

4. Geochemical: mineral trapping 

 

 

 

 

 

 

 
Figure 1.1 The timeframes for the different trapping mechanisms for geologic storage 
vary considerably. From (Metz et al., 2005) 
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The time scales associated with geochemical trapping mechanisms is much larger than 

those of physical trapping mechanisms, and while they become important when talking 

about very long term (>1000 years) storage security, they are not as relevant as the 

physical trapping mechanism in the near to medium term, and therefore will not be 

discussed in this thesis. 

  

Structural and stratigraphic trapping is the mechanism that relies on the geometry of the 

formation to store the CO2.  These are under a low permeability seal or caprock, or in 

areas where there are structural traps created by folds in the rock of the formation, or 

impermeable fractures that do not allow the flow of fluid out of the site once it has been 

injected there.  These are the initial primary mechanisms through which CO2 is stored 

underground. 

 

Hydrodynamic, or residual gas trapping occurs in saline formations, where there is a 

fluid, usually brine, flowing through the formation, that causes the injected CO2 to 

migrate slowly in the direction of the flow. The injected fluid displaces the brine, and 

because of differences in buoyancy, the CO2 migrates upwards. During this movement of 

the plume, CO2 becomes trapped in the pore spaces of the rocks of which it pushes the 

brine out of. The trapping is on the pore scale, but can trap significant amounts of CO2, 

depending on the properties of the rock (IPCC, 2005). The model used for the analysis in 

this thesis is a residual trapping model that is used on the basin scale to estimate capacity 

and model leakage.  

1.3 Capacity Estimation methods for Saline Aquifers 

Attempts at quantifying the storage capacity for saline aquifers have lead to a large 

variation in the estimates of how much CO2 can be stored. The Department of Energy’s 

Carbon Atlas has recently attempted to quantify the storage capacity of various 

formations in the US (DOE, 2008). The large variation in the estimates comes from a 

number of sources, but is mainly from different approaches for how one can measure the 

capacity of the subsurface. Almost all the methods are based on approaches that are from 
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reservoir modeling and estimation techniques from the oil and gas industry. However, 

even with sophisticated modeling, there are large uncertainties associated with those 

techniques. Additionally, saline aquifers are relatively unexplored in comparison to oil 

and gas fields, and so whether these techniques are directly applicable is not clear. 

 

Almost all attempts at quantifying storage capacity in saline aquifers look at the structural 

and stratigraphic trapping mechanisms, as these are considered the most relevant and 

most likely to be used to determine potential injection sites. The most commonly used 

method is to use a volumetric estimate of the formation, and to then multiply it with an 

‘efficiency’ factor that is site specific, determined using a combination of geologic and 

physical parameters, and use parameters representing high and low probabilities to 

determine the best and worse case estimates for capacity. This efficiency factor scales the 

total pore volume of the reservoir to volume of CO2 that can be trapped (Frailey, 2008). 

 

Additionally, a classification scheme for CO2 storage space, based on the probability of 

its use, is proposed in the Carbon Atlas. In this scheme, a distinction is made between 

CO2 storage ‘resource’ and ‘capacity’. Resource is used to describe the technical and 

scientifically useable pore space in which CO2 can be stored, with the constraints applied 

being technical and scientific in nature. Capacity, on the other hand, refers to the pore 

space that is accessible and useable after economic and regulatory constraints have been 

applied. This classification scheme is similar to that used in the oil and gas industry, 

where a distinction is made between proved and probable reserves, based on the 

economic factors that affect extraction. For the purposes of this study, we will be 

referring to the scientific measurement of pore space as capacity, which parallels the 

terminology used in the models which will be used for uncertainty analysis. 

 

To date, there have been no analyses that model carbon dioxide leakage on a basin scale. 

The work done on leakage focuses mainly on leakage mechanisms through abandoned 

wells or on the integrity of the cap rock, but no study has been conducted which estimates 

leakage rates and the time frame of leakage with models that include the migration of the 

CO2 plume.  
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1.4 Regulation of Geologic Storage in the United States 

In July 2008, the Environmental Protection Agency, (EPA) released a proposed rule for 

Geologic Storage under the Underground Injection Control (UIC) program of the Safe 

Drinking Water Act (SDWA). This rule regulates the injection of any ‘fluid’ into the 

subsurface, where a fluid is defined as ‘any material which flows or moves whether in a 

semisolid, liquid, sludge, gas or other form or state’. The regulation covers CO2 that is 

injected for enhanced oil and gas recovery. Additionally, UIC regulates the injection of 

both pollutants and commodities, and so the debate of whether CO2 is a pollutant is not 

an issue in determining the Authority of the EPA to regulate geologic storage. 

 

The existing UIC rule regulates injections for the protection of underground sources of 

drinking water (USDW) through five different classes of wells, for specific classes of 

materials that are injected. The injection of CO2 for enhanced oil recovery is regulated 

under the class II wells, which are for hydrocarbon production. For the sole purpose of 

geologic storage, a sixth class of well is proposed, for which the regulations will take into 

account the specific nature of long-term storage of CO2. 

 

The UIC program is designed to prevent the flow of fluids into USDW, and in its 

components, it addresses pathways through which the injected fluids could potentially 

migrate into to USDWs. These components are: 

1. Siting 

2. Area of Review  

3. Well construction 

4. Operation 

5. Mechanical Integrity Testing 

6. Monitoring 

7. Well Plugging and Post-injection site care 

 

This thesis focuses on the first two components of the program- siting and area of review. 

Both of these come under site characterization, which needs to be conducted to ensure the 
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safety and the efficacy of storage in a particular site, and to ensure that any effected 

regions do not have faults or fractures that may endanger USDWs. (EPA, 2008) 

 

From the perspective of climate policy, the issue of storage permanence and the 

likelihood of leakage creates a challenge on many levels. Firstly, since the purpose of 

geologic storage is to prevent the addition of CO2 into the atmosphere, any leakage 

compromises this objective. Secondly, in a foreseeable future where there is a monetary 

value attached to carbon dioxide or carbon credits allotted per unit of CO2

stored, the presence of leakage can compromise the accounting in the system. The EPA 

regulations do not cover these aspects; the SDWA is designed to prevent contamination 

of ground water supply, not to prevent CO2 being emitted into the atmosphere. 

 

To issue a permit for a potential sequestration site, EPA would, according to the proposed 

rule, require the following information: 

1. A geologic assessment that demonstrates the presence of geologic features that 

are suitable for CO2 storage which will not endanger USDWs. Operators would 

have to submit maps of USDWs in the area near the injection site. 

2. Geologic data about the rocks in the formation, including data about ‘the lateral 

extent and thickness, strength, capacity, porosity and permeability’ of the 

formation. 

3. Results of seismic and geomechanical studies of the cap rock regarding its 

strength, rock stress, stability and ductility. 

4. Geochemical data regarding the fluids in the aquifers and their mineral content. 

 

Of these, the second requirement of geologic data is relevant to this thesis, as it requires 

not only estimates of the capacity of the formation, but also data about parameters that we 

are assuming to be uncertain in a given formation, such as porosity. 

 

The regulation also requires a determination of the Area of Review (AOR), which the 

EPA defines as ‘The region surrounding the geologic sequestration project that may be 

impacted by the injection activity’. Determining the AOR is important in site 
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characterization and its suitability for GS because it requires any faults or penetrations 

that could endanger USDWs to be identified and evaluated. 

 

Current UIC regulation for well classes I-III require that the AOR is either a fixed radius 

away from the injection site, or greater than the area above the pressure front of the 

injected fluid that has been determined through computational modeling. However, it is 

recognized that the CO2 plume would cover a much larger range than those of other 

fluids that have been injected under the UIC program, and that neither the fixed radius 

nor computational methods are adequate to predict the movement of the plume. 

Therefore, the proposed rule suggests that ‘computational multiphase fluid flow models’ 

are used in determining the AOR. It specifies that the model should use site 

characterization data specific to a particular injection site, and takes ‘into account any 

geologic heterogeneities, and potential migration through faults, fractures and artificial 

penetrations’. 

 

In its discussions of models, the proposed rules suggest allowing the use of proprietary 

models that cannot be easily evaluated, as long as they are adequately documented. No 

one particular modeling approach is given preference, and uncertainty analysis is not 

mentioned.  

 

The use of one particular model in this thesis that makes use of multi phase flow 

dynamics and its performance under uncertainty can provide insight onto how models 

and uncertainty analysis should be used as a part of site characterization. 

 

In addition to the proposed rule, the EPA has also published a Vulnerability Evaluation 

Framework (VEF) in order to assist operators in determining the risks of geologic storage 

in a particular site (EPA, 2008). However, uncertainty regarding the behavior of the CO2 

plume is not discussed in the document, and there is a reliance on observed data from 

monitoring after injection to evaluate how the plume migrates.  
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1.5 Objective of this work  

 
In this thesis, the research question I will address is, “How does variability in geologic 

parameters affect the storage capacity and the leakage potential for CO2 injected into 

saline aquifers?”. In order to answer this question, I will perform uncertainty analysis 

applied to a residual trapping model in a saline aquifer to evaluate: 

1. The uncertainty in capacity estimates  

2. The probability of leakage, and the uncertainty in both in quantity and in time to 

the start of leakage 

 

The uncertainty analysis will look at the sensitivity of the estimates to individual 

parameters and variation of correlations between parameters and produce probability 

density functions (PDFs) to represent these. For the leakage, we will also look at the 

effects of uncertainty related to the spatial distribution of the leakage faults. 

 

The characterization of these uncertainties is important, particularly because of the lack 

of data that is available about the properties of saline aquifers. The overall research goal 

of this work is to identify how the variability in certain geologic parameters can affect the 

performance of this particular model. By using this approach, we can also represent 

heterogeneity in the rock properties on a large basin better than by using a value from a 

small number of sites, which is a better representation of the physical characteristics of 

the subsurface.  

 

The presence of uncertainty in geologic storage has implications for the further 

development of the science behind geologic storage, as well as policy implications. The 

proposed rules for the regulation of geologic storage as discussed in the previous section 

raise issues about how uncertainty is handled in the permitting process. Finally, by 

looking at uncertainty in potential leakage sites and how that affects the rate of leakage 

into the atmosphere, we can address the issues raised about permanence and storage 

efficacy. These issues are discussed in detail in chapter 4. 
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Chapter 2: Models and Methods 

In order to perform uncertainty analysis, the following steps were performed: 

1) Selecting the relevant models 

2) Selecting the uncertainty analysis methods 

3) Determining the input parameters 

4) Characterizing the distributions of the input parameters 

5) Performing the uncertainty analysis 

Each of these steps is discussed in detail in the sections below. 

2.1 Models used 

The model that is used in this analysis is a dynamic, multiphase flow model for the 

trapping of CO2 that can be used for capacity estimates on a basin scale (Szulczewski and 

Juanes, 2008). In comparison to the methods used by the Department of Energy, this is 

also a volumetric model adjusted using an efficiency factor to determine the storage 

volume. However, the underlying physical process that is modeled is different, and 

therefore, a straightforward comparison of results of the methods is difficult. 
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The model allows for capacity estimation for a simplified representation of a basin, as 

shown in fig 2.1 below. The basin is modeled as a rectangular volume of constant 

thickness at a constant depth below ground level, with the direction of natural 

groundwater flow taken as uniform. A maximum plume length is determined by 

demarking boundaries beyond which the geologic conditions such as the presence of 

faults or non-uniform groundwater flow make the model unsuitable for use. 

 

 
Figure 2.1: Schematic of basin, showing positioning of well array, and footprint of plume 
in the direction of the groundwater flow. From Szulczewski and Juanes (2008). 
 

 Using this information, the optimal positioning of the well array, perpendicular to the 

groundwater flow, can be determined. With the known location of the well array and a 

theoretical maximum boundary for the plume, we can calculate the capacity of the basin. 

This closed form solution for capacity as described by the multiphase flow model is 

shown below in equation 1: 

 

     
C =

2MΓ2(1− Swc )
Γ2 + (2 − Γ)(1− M + MΓ)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ρco2

φHWLtotal                 (1) 

 22



Where C is the mass of the trapped CO2, M is the mobility ratio, Γ is the trapping 

coefficient, Swc is the connate water saturation, ρCO2 is the density of the CO2, φ is the 

porosity of the rock, H is the net sandstone thickness of the reservoir, W is the width of 

the well array, and Ltotal is the total extent of the plume. 

 

In the above equation, M and Γ are defined as: 

                        M =
1/µw

k *rg /µg

                                           (2) 

 

 

                           Γ =
Srg

1− Swc

                                             (3) 

 

Where µw is the viscosity of the brine,  

µg is the viscosity of the CO2, 

 K*
rg.is the endpoint relative permeability to CO2, 

 Sgr is the residual saturation of CO2

 

 

The same physical phenomenon is described separately in a complementary model that 

uses the same parameters to evaluate the footprint of the plume and its migration as a 

function of time (Juanes, MacMinn, and Szulczewski, 2009). The variation of the model 

characterizes the behavior of the plume in the subsurface as it interacts with the 

groundwater flow in the aquifer. Over time, the model shows the migration of the plume, 

breaking it down into two stages; during injection and post-injection. These are shown in 

the figure 2.2 below. 
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Fig 2.2 The two stages in the migration of the plume. White represents the mobile CO2, 
light blue represents the trapped CO2  and the dark blue is the brine into which the CO2 is 
injected. From Juanes (2008). 
 

During the injection stage, CO2 is injected at a high flow rate, which displaces the water 

in the aquifer to its irreducible saturation. In the post injection stage, the groundwater 

flow and the buoyancy of the CO2 allow it to migrate, with CO2 being trapped in residual 

form at the trailing edge. The thickness of the mobile plume, hg, decreases as the plume 

travels laterally. 

 

The process can be broken down further into 3 phases in the post injection stage- the 

retreat, the chase and the sweep phases. The retreat and chase phases describe the 

behavior of the CO2 that migrates in the opposite direction to the groundwater flow 

during injection, and for simplification of the model, we assume that these phases are of 

relatively short time periods and that there is no leakage, since we will model our faults 

to be a certain distance away from the injection wells in the direction of the water flow 

and plume migration. The sweep stage occurs when the mobile plume detaches from the 

bottom of the aquifer, below the injection well, and the entire mobile gas plume is 

moving away from the injection well in the direction of the groundwater flow. The 

leakage is therefore modeled during all stages of the plume migration. 

 

This model incorporates the movement of the CO2 plume in the reservoir because of 

initial excessive gravity override during injection, and the regional groundwater flow in 
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the reservoir after the completion of the injection phase. The evolution of the plume, and 

the mass of CO2 trapped in the pore spaces it travels along the reservoir can be modeled 

analytically in one dimension. By being able to evaluate the movement of the plume over 

time, we can then introduce a simple case of a fault in the migration path and develop a 

simplified scenario for leakage through this fault. By specifying a leakage length Ll, we 

can calulate the time it takes for the mobile CO2 to reach the location of the fault using 

the following equation: 
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Where Qi is the injection rate, and T is the injection period.  The time at which leakage 

ends is calculated using: 
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The set of equations used to evaluate leakage during injection and during the post 

injection period differ slightly because of the different conditions, but follow the same 

steps.  

 

Once the times during which there is leakage are known, we can then evaluate the height, 

hg of the plume at that location at a given time, using the following equations: 
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where t is the time at which the expression is evaluated, and Qn is the groundwater flow 

rate 

 

The leakage flux can then be evaluated from hg at each time period, using the following 

equations: 

Qinjection (t) = Qi
Mhl

(M −1)hl + H
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟                                                                (8) 

 

Ql,post− injection (t) = Qn
hl

hl + 1
M (H − hl )

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟                                                  (9) 

These set of equations describe the flux in a one-dimensional space. The total amount of 

CO2 that leaks through a fault of a given width Wleak  can be determined by multiplying 

the results of the leakage flux Ql with the width. In order to evaluate the total injected 

CO2 that leaks, a numerical integration between the time periods is performed. 

2.2 Uncertainty Analysis 

One of the most conceptually simple and widely used methods to perform uncertainty 

analysis is Monte Carlo Simulation. In its simplest form, the Monte Carlo simulation 

evaluates a given model using input values that are randomly selected from a defined 

probability distribution for each uncertain parameter, which gives a single estimate for 

the output of the model. This process is repeated a number of times where each set of 

input values are randomly drawn. The output of each set of input values is then a sample 

from the probability distribution of the output of the given model. With a large enough 

number of samples for a given distribution of inputs for a particular model, the frequency 

distribution of the output asymptotically approached the conditional PDF of the model.  

 

As indicated above, the performance of the Monte Carlo simulation is only as effective as 

the selection of the input distribution functions for the model being evaluated. It is also 

important to understand the underlying model sufficiently to ensure that output values are 

realistic, and in this case where we are modeling a physical process, do not generate 

results that are impossible. 
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2.3 Parameters for uncertainty analysis 

We can separate the parameters that are the inputs to this model into two groups; one 

group which describes the geometry of the basin: H, W, Ltotal, and a second group that 

characterizes the fluid flow properties of the rock and the injected fluids: φ, Swc, Sgr,, K*
rg, 

µw, and µg. For the purposes of this analysis, the parameters in the second group will be 

treated as uncertain, with appropriate probability density functions determined from data 

that is available. 

 

When performing uncertainty analysis, it is extremely important to ensure that any 

relationships between the parameters that are being varied are taken into consideration 

when sampling from the individual distributions. In order to do this, an understanding of 

the basic science between the parameters allows us to characterize these relationships 

better, and run simulations that are consistent with the physical processes. In the six 

parameters that we are treating as uncertain in this work, three of them- Swc , the connate 

water saturation, Sgr, the residual gas saturation and K*
rg, the endpoint relative 

permeability of CO2, are related.  Figure 2.3 shows a schematic of a relative permeability 

curve for CO2, and these three values can be obtained from this graph. 

 
Fig 2.3 Schematic of relative permeability curves for water and CO2 for drainage and 
imbibition cycles 
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This graph describes the relationship of the amount of CO2 that a given rock sample is 

permeable to, given a certain saturation of water that is already present in the sample. 

This is the same scenario as injecting CO2 into an aquifer that already has brine in it. Swc  

and K*
rg are the X and Y coordinates, respectively, of the same point on the line, which is 

the maximum point of the relative permeability curve in the drainage stage- where the 

CO2 is passed through the wet rock and occupies the pore space that was previously 

occupied by the water, up to the point where it is no longer possible to reduce the 

saturation of water in the rock. This makes the relationship between Swc  and K*
rg  

obvious- a lower Swc  leads to a higher K*
rg, and vice versa. 

 

Sgr measures the amount of CO2 trapped in the pore spaces once the rock is flooded with 

water again- the imbibition stage, shown by the dotted line in the graph above. The two 

stages combine to form a hysteresis curve, with the difference on the water saturation of 

the sample once it is no longer permeable to CO2  indicating the amount of CO2

 that is trapped. (Dullien, 1992) 

 

The relationship between Sgr and Swc is not as obvious. Both cases, a negative and a 

positive correlation between Sgr and Swc, can be possible from a physical level. A lower 

Swc would mean that a higher amount of CO2  can pass through the rock, and that this 

higher quantity would lead to more trapping of CO2, indicating a negative correlation 

between Sgr  and Swc . However, this does not completely eliminate the possibility of a 

positive correlation between the two parameters, as the amount trapped may not 

necessarily only depend on the amount that can pass through it, but can be a function of 

other properties, such as quality of rock. These relationships must be taken into  

consideration when simulating the model. Because the relationship between Swc  and K*
rg 

 is known, the relationship between Swc  and Sgr will then directly influence the 

relationship between K*
rg and Sgr. (Juanes, personal communication). 

2.4 Methods: Determining the Distributions of Uncertain Parameters 

In order for the Monte Carlo simulation to effectively represent the uncertainties in a 

model that are a result of the variability in the input parameters, it is essential that the 
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PDFs that are selected for the input parameters characterize the likely values in a realistic 

manner.  

 

For the parameters we have described above, there is very little data in the literature, 

particularly about the relative permeability characteristics of the sandstone/carbonate 

rock that is found in the saline aquifers with brine/CO2 flowing through. This is because 

much of the previous literature has focused on the oil and gas industry, and geologic 

sequestration is a fairly new field. To determine the appropriate PDFs for φ, Swc , Sgr 

 and K*
rg, we used data from Bennion and Bachu (2006), which were obtained from core 

samples for carbonate and Sandstone rock, taken from two regions in Alberta, Canada. 

We use this data as being a realistic scenario of the data that may be available about a 

particular sequestration site, with the heterogeneity that is present in the samples being 

representative of the fact that there can be differences within regions that are nearby.  The 

data that is used is indicated in table 2.1 below. 

 

Table 2.1:  Data used to fit probability distribution functions for porosity, Swc , K*
rg and 

Sgr.  

Sample Rock Type Porosity  Swc  K*
rg Sgr

Cardium 1 Sandstone 0.1530 0.1970 0.5260 0.1020 
Cardium 2 Sandstone 0.1610 0.4250 0.1290 0.2530 
Viking 1 Sandstone 0.1250 0.5580 0.3319   
Viking 2 Sandstone 0.1950 0.4230 0.2638 0.2970 
Ellerslie Sandstone 0.1260 0.6590 0.1156   
Basal Cambrian Sandstone 0.1170 0.2940 0.5446   
Wabamun 1 Carbonate 0.0790 0.5950 0.5289   
Wabamun 2 Carbonate 0.1480 0.5690 0.1883   
Nisku 1 Carbonate 0.0970 0.3300 0.1768   
Nisku 2 Carbonate 0.1140 0.4920 0.0999 0.2180 
Cooking Lake Carbonate 0.0990 0.4760 0.0685   

 
The values of Sgr are provided only for samples for which the imbibition cycle was part 

of the experimental process. The PDFs generated from the data in the table above for 

each of the parameters is shown in Figures 2.4 – 2.7. 
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As discussed in section 2.3, the correlations between Swc , Sgr  and K*
rg  must be defined in 

order to generate samples which are representative of the physical process. The negative 

correlation between K*
rg  and Swc  was fixed, with a correlation coefficient of  -0.5. As 

part of the analysis, three cases for which the correlation coefficients between Sgr 

 and Swc  were simulated: a base case, for which this correlation was set at 0, a positive 

correlation case, where the coefficient was set at 0.5, and a negative correlation case, 

where the coefficient was set at -0.5. These correlations do not effect the marginal 

distributions of the parameters, but are taken into consideration for each individual 

simulation performed during the Monte Carlo simulation. 

 
Fig 2.4 PDF of K*

rg, samples from distribution fit to data from Bennion and Bachu 
(2006). 
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Fig 2.5 PDF of porosity, samples from distribution fit to data from Bennion and Bachu 

(2006). 

 
Fig 2.6 PDF of Sgr, samples from distribution fit to data from Bennion and Bachu (2006) 
 
 

 31



 
Fig 2.7 PDF of Swc , samples from distribution fit to data from Bennion and Bachu 

(2006). 

 

The descriptive statistics for the 5000 samples generated from these distributions during 

the simulation are shown in table 2.2. All the distributions are beta general distributions, 

which are continuous distributions defined on the interval [0,1]. 

Table 2.2: Descriptive Statistics for input distributions of uncertain parameters 

  Porosity Sgr Swc  K*
rg

Distribution type Beta General Beta General Beta General Beta General 
Mean 
 0.129 0.209 0.441 0.287 
Median 0.126 0.204 0.441 0.262 
5% Percentile 0.081 0.100 0.235 0.073 
25% Percentile 0.106 0.157 0.352 0.161 
50% Percentile 0.126 0.204 0.441 0.262 
75% Percentile 0.149 0.256 0.531 0.389 
95% Percentile 0.183 0.333 0.641 0.588 

 

The viscosities of water and CO2 are functions of the reservoir temperature and pressure, 

which in turn are functions of the depth of the reservoir. Therefore, in order to model the 

distribution for the viscosities, the distribution of the depths in the reservoir were 

modeled. Using a hypothetical reservoir of uniform thickness at a constant depth 
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underneath the surface, the temperature and pressure for the reservoir were calculated 

using a geothermal gradient of 0.025oC/m and a hydrostatic pressure gradient of 0.1 

bar/m respectively. (Szulczewski, 2009) 

 

The depth to the top of the reservoir was assumed to be 1000m. This is a realistic 

scenario, because for the purposes of storage and injection, depths of at least 800m are 

desirable. This is because at the temperature and pressure at that depth, CO2 is in a 

supercritical fluid phase which is recommended for underground storage because it is at 

the appropriate density.  The depth to the bottom of the reservoir is a constant, H, which 

is the net sandstone thickness. Consequently, the distribution of depths is between 1000m 

and 1000+H m.  Within the reservoir, the CO2 is not uniformly distributed, and as can be 

seen in fig 2.2, the CO2 is more likely to be closer to the top of the reservoir than the 

bottom because of the differences in buoyancy. This affects the distribution of the depth 

measurements, and as an approximation, the distribution of the possible values of the 

depth of the stored CO2 is assumed to be triangular, as shown in the Fig. 2.8 below. 

 

 

Maximum length, Ltotal

 

 

 

 

Depth to top 
=1000 m 

 

 

 

 
Net Sandstone 
thickness, H 

 

 

 
Fig 2.8 Schematic of reservoir depth, The blue shaded area indicates depths at which 
viscosities were calculated to create PDF for viscosity ratio. 
 

Once a distribution for depth was obtained, the values for the viscosity of CO2
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 at each depth was calculated using an online thermophysical properties calculator 

available publicly on the MIT Carbon Sequestration Initiative website (MIT,2009). The 

viscosity of water was calculated using a correlation function (Likhachev, 2003). 

The ratio of the viscosities, for water/CO2 ,was then calculated to provide the samples 

from which a PDF was generated. The ratio was used, as opposed to separate 

distributions for the viscosity of water and CO2 to ensure that within each sample, the 

viscosities were consistent for both CO2 and water. 

  

2.5 Performing the Monte Carlo analysis 

Once the input PDFs for the parameters were generated, the Monte Carlo analysis was 

performed using Palisade @Risk version 5.0 software, which is a plug-in into MS Excel 

that is used for uncertainty and risk analysis. Each Monte Carlo analysis performed ran 

5000 samples of the model, using Latin Hypercube Sampling (Iman, Davenport and 

Ziegler, 1980). 

 

The constant parameters H, Ltotal, and W were selected from the work by Szulzcewski 

and Juanes (2008) which describes the capacity model. However, because of the possible 

differences in the rock properties for the specific site that they modeled, this work will 

not attempt to compare results for capacity.  Instead the same dimensions of the reservoir 

are used here to provide a realistic scale for a basin on which this analysis may be 

performed. 

 

The values selected were: 

• H=120m, Ltotal=299,300 m and W=42,000m. These were taken from the work in 

which the model is presented, and are used as being representative of the 

dimensions of a realistic injection site. 

• The value for density of CO2 was calculated using the average depth of the 

reservoir, and was 685 kg/m3.  
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Using these values and the input PDFs, Monte Carlo simulations were performed for the 

following cases for the capacity model: 

1. A base case, where the correlation between Sgr and Swc  was set to 0. 

2. A Positive correlation case, where the correlation between Sgr and Swc  was set to 

0.5. 

3. A negative correlation case, where the correlation between Sgr and Swc  was set to -

0.5. 

4. 5 cases, where 1 parameter was varied at a time while the remaining four were 

held constant 

5. 5 cases, where 1 parameter was held constant at a time, while the remaining four 

varied. 

 

To evaluate the leakage, we defined a scenario where the output of the capacity model 

was used to determine how much CO2 should be injected into a particular site. However, 

we assume that the existence of a fault some distance away from the injection site was 

unknown before the injection, and was not taken into consideration when boundaries 

were evaluated. The model then calculates the amount of CO2 that escapes at that 

location. The location of the fault, or the leakage length, then becomes a variable in the 

model. 

 

In order to model leakage, we construct a PDF of the distance of the fracture from the 

injection site. The distance was assumed to be exponentially distributed between the 

injection site and the maximum boundary at Ltotal, and that the probability of a fracture 

going undetected further away from the injection site is more likely than one that is 

closer. This distribution was selected to represent the intuition that as a site is selected for 

injection, the nearby area will be assessed more carefully than the areas further off for 

possible leaks and fractures. 

 

After running the simulations, the samples were filtered to remove any that represented 

physically impossible scenarios. These were results from the model that were computed 

from combinations of the individual variables that combine to represent phenomena that 
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are not possible, such as a trapping efficiency greater than 100% or negative leakage. 

These are: 

1) Negative storage capacity rates 

2) Negative lengths for plume length, as this would imply the CO2 migrating against the 

groundwater flow 

3) Values of the trapping coefficient greater than 0.7 

4) Values for mobility ratio greater than 1. 

5) Negative leakage rates for the leakage model 

 
The results of the simulations are presented in chapter 3. 
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Chapter 3: Results 

 
In this section, the results of the uncertainty analysis for the scenarios described in 

section 2.4 for storage capacity are presented. 
 

3.1 Results of Capacity Simulations 

 

Fig 3.1 shows the PDF of storage capacity, in Gt of CO2 .  From this figure, we can see 

that in the presence of uncertainty in the geology of the site, the estimate of storage 

capacity can vary greatly. The expected value of the distribution, as well as the median 

storage capacity is indicated on the graph. 

 

In order to compare the performance of the model under uncertainty with a deterministic 

calculation, the capacity for the basin described in Section 2.5 was calculated using the 

mean values for each of the parameters, shown in table 2.2. The capacity for this aquifer 

was calculated as 2.62 Gt CO2.  
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 3.1 shows the PDF of capacity, in Gt of CO2. The black line is the mean value of 
tribution, the red line indicates the median, and the blue line is the capacity 
te from the deterministic calculation. 

he resulting distribution, it is evident that the deterministic calculation of storage 

y using the mean values of the model parameters is different from the expected 

alculated from the Monte Carlo simulation with multiple parameters varying at the 

me. The distribution has a negative skew, with the mean of the distribution being 

than that of the capacity determined using the mean of the input parameters. This 

nificant result, as it illustrates the importance of having better information about 

ues of geologic parameters that characterize a site, and that the average value of 

ant parameters may not be sufficient to provide an accurate estimate of storage 

y. In this case, the negative skew of the distribution implies that given the 

tions of the inputs, it is much more likely that there are more combinations of 

hich result in smaller values of capacity than larger ones. The larger capacity 

tes represent physical values that are physically extremely unlikely, although there 

a non-zero probability of these large values occurring. 
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The wide range of the capacity estimates which is evident in figure 3.1 is also significant. 

While there is a large mass of the distribution within a narrow range, between 1 Gt and 5 

Gt of CO2, there is still a non-zero possibility that the capacity of the given site can, for a 

particular set of geologic conditions, be more than three times as large the expected 

value. The DOE’s Carbon Atlas, in its estimate of storage capacity in saline aquifers also 

presents a range where the upper estimate is four times as large as the lower estimate. 

However, unlike this analysis, it does not evaluate the relative likelihood of each of these 

scenarios. Our results show that while there is a possibility of extremely large storage 

capacities, there is a much lower chance of this occurring in comparison to the smaller 

values. 

 

As discussed in Section 2.3, an important relationship between geologic parameters, for 

which there is very little data available, needs to be understood better. Its effect on 

capacity estimates can be seen in Fig 3.2, which shows the PDFs of capacity for three 

different assumptions about the correlations between Sgr  and Swc  are varied. The base 

case, zero correlation between Sgr  and Swc , is the same case shown in fig 3.1 

 

 
Fig 3.2 PDF of storage capacity for the cases with varying correlations between Sgr 
and Swc . 
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Table 3.1 shows the mean, median, standard deviations and the fifth, twenty-firth, 

seventy-fifth and ninety-fifth percentiles for these three distributions. 

 

Table 3.1 Statistics for the distribution of the capacity estimate simulations with varying 
correlations 
    Mean Median Std dev. 5% 25% 75% 95% 

Base Case 3.56 2.44 3.44 0.42 1.23 4.68 10.59

Positive correlation 3.46 2.21 3.67 0.23 0.93 4.68 11.09

Negative correlation 3.81 2.89 3.15 0.81 1.72 4.77 10.28

 

From figure 3.2, we can see that capacity estimates are sensitive to the correlations 

assumed. In the case of negative correlation between Sgr and Swc , shown by the red line, 

we see that there is a larger variance, and higher probabilities of larger capacities. We 

would expect this because a lower Swc , which is the irreducible saturation of the water, 

would mean that a higher amount of CO2 can pass through the rock since there is more 

available pore space, and that this higher quantity would lead to more trapping of CO2, 

which is represented by the higher Sgr. 

 

Assuming positive correlation results in a narrower distribution of storage capacity, 

which demonstrates a physical behavior that is opposite to that of the negative correlation 

case. Physically, this would mean that even though there is less available pore space for 

the CO2 to occupy in the first place, a large portion of it is still trapped. This analysis 

demonstrates the need to understand the properties of the rock into which CO2

 is being injected much better on a pore scale level. 

 

It is useful to understand the relative contribution of parameters to uncertainty in the 

capacity estimates. As a first test, one parameter at a time was varied while holding the 

others constant (fig 3.3).  
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A second test held one parameter constant and varied the others (fig 3.4).  For both 

analyses, the 5% to 95% percent range for the capacity estimates is shown.  

 
Fig 3.3 Sensitivity Analysis for one parameter variable at a time. 

 

 
 

Fig 3.4, Sensitivity analysis for one parameter constant at a time. 
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The figures indicate that K*
rg  and Sgr are the greatest contributors to uncertainty in the 

capacity model. When they are the only variables in the Monte Carlo simulation, the 

ranges of the estimates are smaller in magnitude than only the base case. Holding them 

constant also leads the smallest ranges when all the other parameters in the simulation are 

variable.. The large variability introduced by the variation of K*
rg, which is used to 

calculate the mobility ratio, is expected, because the solution to the model is highly 

sensitive to the value of M. (Juanes, 2008). Sgr determines the trapping ratio, which 

measures the amount of CO2 that is trapped in the rock, and its contribution to the 

variability in the capacity estimates reflects that the measure of the residual gas that is 

trapped in the pores of the rock has a direct influence on the total capacity of the entire 

basin.This is extremely significant, as it implies that we can reduce uncertainty in 

estimates of geologic storage capacity by reducing the uncertainty in these parameters. 

Since these are quantities that are measurable from core samples in experimental lab 

settings, multiple measurements over a potential sequestration area are a straightforward 

way of reducing the uncertainty in estimates for a given site 

 

 

In figure 3.3, we see much narrower ranges for the capacity estimates, as holding 4 of the 

parameters constant removes the variability that is introduced by the interactions between 

the parameters. This is reinforced by the fact that the case in which all the parameters are 

varied has the largest range of values. The small range for capacity in the case where 

viscosity ratio is the only variable is also a result of the fact that the range of values for 

the viscosity ratios is very small, and therefore, even at its extreme values, there is little 

variation to the model overall. While K*
rg  and Sgr have the greatest influence on 

variability, the other parameters do contribute significantly. Variability is not 

significantly reduced by holding porosity constant, because unlike the other parameters 

we are treating as variable, porosity varies directly with the capacity estimate. Swc, which 

is used to calculate the trapping coefficient also contributes to the uncertainty, but not to 

the extent as Sgr. 
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3.2 Results of Leakage Simulations 

As discussed in chapter 2, we modeled leakage by introducing fractures in the basin at 

various distances away from the injection well. The distances are presented as normalized 

to the maximum length, ranging from 0 to 1. The width of the fault for these cases is 

assumed to be 500m. The volume injected into the aquifer is the same in all the cases, 

which is 3.5 Gt of CO2, injected at a constant rate over 30 years. This was selected from 

the capacity results above as being a ‘best guess’ value of the capacity of a given site, and 

this part of the analysis looks at the results of an unknown leak being present. 

 

There are three main questions that we are looking to answer with the leakage model: 

what is the probability of leakage, what is the order of magnitude of the leakage in the 

cases where leakage occurs, and what is the timeframe for the start of any possible 

leakage. This section will present the results to each of these questions sequentially. 

 

To demonstrate the behavior of the leakage model, we first present a test case in which 

only the distance of the fracture from the injection well, is varied, with all other 

parameters held constant at their mean values (i.e., no uncertainty). Fig. 3.5 shows 

whether leakage occurs at different distances away from the injection well.  

 
Leak or No leak as a function of distance away from the injection well, 

with all geologic parameters constant 

 

Le
ak

/ N
o 

Le
ak

 (L
ea

k 
=1

, n
o 

le
ak

= 
0)

 

Fig 3.5. Leak/No leak at different distances away from the injection well. 
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From figure 3.5, we can see that if we have no uncertainty in the geologic parameters, we 

are able to define a boundary beyond which we know that the plume will not travel. This 

is because with no variability in the geologic parameters, we can calculate the plume 

length and the extent of its migration with its certainty. However, as already 

demonstrated above, there is significant uncertainty in the geology. 

 

Figure 3.6 shows the results of the model for fixed distances away from the injection site, 

but with all the parameters varying. A Monte Carlo simulation was performed at each of 

the distances to determine the probability of leakage. 

 
 

Figure 3.6 Fraction of samples for which there is leakage at different lengths, with all 
parameters varying. 
 

We can see in figure 3.6 that in the presence of uncertainty in the geologic parameters, 

leakage can occur further away from the injection site. However the further away the leak 

is located, the less likely it is to leak. Unlike the deterministic case (fig 3.5), we cannot 

determine a cut off boundary beyond which we do not see any leakage.  

 

A more realistic scenario to model leakage, as discussed in the previous chapter, is to use 

a distribution which represents the intuition that a leak that is close to the injection site is 

more likely be discovered and therefore taken into account in siting, while fractures 
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further from the well are more likely to be missed. An exponential distribution of fracture 

location models this scenario. The input distribution is shown in fig. 3.7 below. 

 
Figure 3.7 Input distribution for fracture distance from injection well. 

 

 
Fig. 3.8 Distribution of lengths at which leakage occurs. 

 

Fig. 3.8 shows the probability of leakage at different distances from the injection site, 

which are exponentially distributed as shown above.  Because of the larger number of 

samples toward the boundary of the site, the relative likelihood of leakage is higher 

 45



further from the well. This does not reflect the amount of CO2 that leaks, but rather only 

shows that there is more likely to be non-zero leakage. Overall, there was leakage in 

approximately 38% of the samples. 

 

When leakage does occur, there are two model results that are of interest: the total 

amount of CO2 that escapes over the duration of leakage, and the start time of the 

leakage. Probability distributions of both of these quantites are given in the figures 

below. 

 

median mean 

Figure 3.9 Distributions of total amount leaked, as a percentage of total injected volume 
of CO2. The blue line indicates the mean of this distribution, and the red line is the 
median. 
 

Figure 3.9 indicates that the total CO2 injected that leaks is extremely small, for the 

majority of samples it is a fraction of a percentage. However, these amounts are directly 

proportional to the size of the fault, so if the fault was twice as big as the one modeled 

here (1 km vs 500m) the leakage amounts would be twice as large.  Even with a 5 km 

fault, 10 times as large as assumed for Figure 3.9, almost all the likely leakage would be 

less than 0.1% of the total injected volume. 

 46



 
Figure 3.10 Distributions of start year of leakage.The blue line indicates the mean year, 
and the red line indicates the median 
 

Table 3.2 Statistics for leakage simulation  

 

  Mean Median 
Std. 
Dev. 5% 25% 75% 95% 

For samples with leakage, 
start time for leakage (years) 4260 3830 2496 1139 2530 5370 8930 
For samples with leakage, 
amount of leakage % 0.0031 0.0028 0.002 0.0002 0.0014 0.0045 0.0071
for all samples1, leakage 
amount % 0.0012 0 0.002 0 0 0.0019 0.0056

The PDF of the year in which leakage begins is shown in figure 3.10.  Table 3.2 below 

gives the descriptive statistics for the leakage simulation results. The conditional dataset 

excludes the simulations in which no leakage occurred.  From these results we can see 

that according to this residual trapping model, there is a very low probability of large 

leakage amounts, and that the start of any leakage that occurs is on the order of thousands 

of years from the start of injection. 

 

                                                           
1 For all samples in the simulation, 62% of the data demonstrated no leaks. 
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Chapter 4: Implications of Uncertainty in Geologic Storage 

In chapter 3, the results of the Monte Carlo simulations performed on capacity estimates 

and leakage potential for storage in a single basin were presented. From these results, it is 

evident that in the presence of uncertainty in the geology of the site, it is difficult to 

accurately calculate the storage capacity of a site.   

 
In the uncertainty analysis for leakage potential, we see that with the model used, we 

have a very low probability of large leakage amounts. In the cases in which there is 

leakage, the amounts that leak out are in fractions of a percentage of the total injected 

volume. Additionally, the timeframe of leakage occurring is on the order of thousands of 

years. These results indicate that if residual trapping is the primary trapping mechanism 

of CO2, the injected gas is unlikely to leak in large amounts in the short and medium 

term. These results have important implications for the science and regulation of geologic 

storage, and its feasibility as a climate mitigation option. 
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4.1 Implications of uncertainty on the science of geologic storage 

The uncertainty analysis performed on the residual trapping model for geologic storage 

presented in chapter 3 indicates that the variability in the rock properties can have a 

significant impact on the behavior of the CO2 within the reservoir.  Since this analysis 

was performed for a basin with realistic dimensions and a dataset of rock properties from 

a different geographical region, the exact numbers from the analysis are not comparable 

to other data; however the trends that are evident in the results provide important insights 

for research in the field of geologic storage. 

 

 Fig. 3.1 shows that when we perform the uncertainty analysis, the mean value of the 

distribution of potential capacity estimates is higher than the mean that would be 

calculated from the mean values of the input distributions in the given model. This is a 

demonstration of the fact that for a non-linear system, the expected value of the function 

is not equal to the function of the expected value, a fact that is often ignored in scientific 

research, particularly when there is no uncertainty analysis performed. It is also 

demonstrative of the fact that the storage capacity has a large possible range for a given 

basin, and the calculation of any one value as being representative of the capacity of the 

entire basin is problematic. 

 

Considering the contribution of individual parameters to uncertainty, we see that the 

relationship between the relative permeability parameters — Swc , Sgr 

 and K*
rg — and their individual effects on the model drive the majority of the uncertainty 

in the model results. This is not surprising, since these parameters are used to calculate 

the mobility ratio and the trapping coefficient, which describe the movement of the CO2

 plume and the amount that is trapped in the rock on a pore-scale, which is then used to 

describe the behavior of the CO2 on a basin scale. This suggests the importance of further 

research into rock properties to understand these parameters better, and to narrow the 

distributions of the possible values that they may take. In this case, the uncertainty in the 

capacity of geologic storage could be significantly reduced by a straightforward set of 

experiments that can be conducted in a laboratory setting.  Not only would this research 

improve the science of geologic storage, but it should also be a significant part of the site 
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characterization process. The cost of performing the core-scale lab experiments that will 

lead to better data is likely justified by the reduction in the variability of the capacity. 

However, since a given reservoir will not be homogenous, a number of samples from any 

one area would need to be tested to ensure that the variability that is present in the rock 

can be characterized. The rise in the number of such experiments would also help bring 

down the cost and improve the experimental process, which in turn could bring down 

costs associated with site characterization. 

 

The uncertainty in the location of leaks, leakage amounts and the start of leakage times  

indicates that when residual trapping is taken into account, the leakage potential is very 

small. The expected value of the amount of leakage is a small fraction of the total 

injected volume, and the expected value of the start of leakage is over a thousand years, 

indicating that geologic storage security exists over large a time frame for sites, even if 

they do not have structural traps preventing the migration of CO2. It also confirms the 

assertion made in the IPCC’s report (Metz et al., 2005) that over a long period of time, 

the contribution of residual trapping to the amount of CO2 stored securely increases. This 

analysis also indicates that fractures that are further away from the injection site are less 

likely to be potential leaks, as the mobile CO2 is less likely to reach that particular site.  

 

While this analysis has provided us some insight into the uncertainty in one particular 

model, it is imperative that for a greater understanding of geologic storage, models of 

different processes of storage, plume migration and leakage are incorporated to ensure 

that the analysis is more complete. Other work in the area has demonstrated the 

variability in plume distribution depending on the geometry of the basins, including the 

thickness of the formation and structural traps, an element of geologic storage that was 

not taken into consideration by this model (Frailey, 2009). There are models which focus 

on dissolution, and not residual trapping as a large contributor to storage efficiency 

(Kumar, 2009), which leads to a different understanding of plume dynamics. A more 

complete model would combine both these processes to provide a better understanding of 

the evolution of the plume. 
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 Additionally, core-scale experiments have also reinforced that the heterogeneity of the 

core can affect the multiphase brine displacement (Perrin, 2009), suggesting the need for 

more study in the area and for uncertainty and variability in geologic parameters to be 

taken into account. From an operational standpoint, relative permeability has also been 

shown to affect injectivity in the reservoir (Burton, 2009), and therefore uncertainty can 

affect the target rates of CO2 injection into reservoirs.  

 

The modeling of leakage processes can also have an impact on the leakage amounts and 

time frame associated with it, which can add more variability in the system. In this 

analysis, the mechanism behind leakage was not modeled in detail, creating a scenario 

that represented that all CO2 that reaches a given location escapes into the atmosphere 

instantaneously. This is an unrealistic approach, and is representative of a worst case 

scenario. A number of different mechanisms to model leaks have been studied, and there 

are detailed models of leakage profiles through wells, fractures and faults, and diffusion 

through the cap rock driven by CO2 buoyancy (Grimstad, 2009).  

 

Additionally, the location of faults away from the injection site and the size of a fault can 

also be modeled, with work on the probabilistic estimates of fault and plume interaction 

looking at ways to characterize this process. (Oldenburg, 2009). With so many different 

physical processes occurring simultaneously, the variability in the entire system cannot 

be characterized as being limited to a subset of parameters. An important takeaway from 

this work is not just the importance of particular parameters in the light of uncertainty 

analysis, but of the process of modeling the associated uncertainty for the different 

models that may be used to gain a better understanding of the science. 

 

4.2 Implications for the regulation of geologic storage 

As discussed in section 1.4, the proposed rules for geologic storage require site 

characterization for geologic storage, which includes specifying storage capacity and an 

area of review (AOR) for which extensive geologic data must be submitted to the 

regulator. 
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Unlike the specifications for the area of review for other classes of injection wells, the 

proposed rule that creates a new category of wells for geologic sequestration of CO2 does 

not state a fixed radius from the location of the injection well as the zone of influence, for 

which site characterization needs to be performed. This is in recognition of the fact that 

unlike other injected substances, the long-term natures of storage and the buoyancy of 

CO2 will result in large but also uncertain behavior of the migration of the plume. 

However, since site characterization is an important part of the permitting process to 

ensure the safety of injection, there is a need to incorporate the uncertain nature of 

geologic sequestration and the evolution of the CO2 plume over time into any future 

regulation. 

 

There are two areas into which the issues surrounding the determination of the AOR can 

be broadly classified: 1) The models that are used in this process and the particular 

physical process that is modeled and taken into consideration 2) The economics of site 

characterization, which may prove to be significant hurdles for operators if the AOR is 

extremely large. Since there is no fixed boundary for the AOR, the rules propose that 

models are used to determine the lateral extent away from the injection site for which the 

geology needs to be characterized. The use of different models and the choice of 

parameter values for those models would likely lead to different results, and it is up to the 

operator to choose the model they wish to use. Additionally, the costs of site 

characterization could also influence the choice of model. These costs are typically per 

unit area, and so there is the possibility that in order to save on this costs, operators may 

avoid the use of models which result in larger areas of review. 

 

As discussed in section 4.1, the various aspects of the science behind geologic storage- 

the different trapping and leakage mechanisms that are possible, as well as the variability 

introduced by heterogeneous geometry and geology- leads to a large number of sources 

of uncertainty in any attempt at modeling. From the results presented in chapter 3, it is 

evident that the presence of uncertainty, or heterogeneity in rock properties over a large 

geographic area, can lead to very different estimates of storage capacity and the migration 
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of the plume. This model took only one trapping mechanism into account, and does not 

account for variability that may occur from variations in the geometry of the aquifer, or, 

from an operational point of view, variation in pressures that result from injection, which 

are only two examples of a number of other sources of variability. 

 

 The proposed rule indicates that the model used during the site characterization process, 

is a dynamic, multiphase flow model, but leaves the choice of model up to the operator 

that is applying for the permit. The trapping mechanism is not specified, nor is there a 

specification of the parameters that need to be included in any particular model. An issue 

that can arise here is one of quality control, and of the possible lack of consistency across 

the permits that are issued by different regions or states. While operators should be given 

the choice to use whatever computational models and simulations they deem appropriate, 

the regulators should ensure that these models take into consideration the different 

scientific processes that are at play in geologic storage. 

 

Additionally, the proposed rule does not include a requirement for uncertainty analysis as 

part of the site characterization data. With more scientific data about a certain site, which 

could be obtained with a larger number of core samples and well tests in the area, one 

could reduce the uncertainty in the behavior of the plume. However, the area from which 

these samples are to be taken need to be delimited by some method since it is not 

practical to have a very large number of samples if they are not required. 

 

The economics of site characterization create a trade-off between a complete site 

characterization that determines the AOR to be the maximum possible extent of the 

plume and one that limits the boundaries based on probabilistic estimates of leakage 

potential. The estimated costs of site characterization are high; these have been cited from 

industry to be $38,610 per km2 for 3-d seismic data collection, $3,000,000 to drill and log 

a well, with one well required for every 65 km2 of the area, and an additional 30% of 

costs for data processing and modeling (McCoy and Rubin, 2009). This means that the 

cost of an area covering 130 km2, would be $14.325 million; the lateral extent of a CO2 
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plume is extremely variable depending on the rock properties and the formation structure 

of a given site. 

 

 Since the cost is per unit area, there is an incentive for the operator to limit the AOR. 

Consequently, there is a corresponding potential disincentive for the operator to present 

scenarios, through the exploration of model or parameter uncertainty, that show larger 

AOR since it would reduce their costs. One means of countering this disincentive is the 

design of liability rules regarding potential leakage. By making operators liable for any 

leakage during injection and for some pre-determined period after injection, regulators 

can ensure that operators are more diligent in their site characterization. 

 

With the availability of probabilistic estimates of leakage potential as a function of the 

distance from the injection site as shown in chapter 3, one option is to determine a 

threshold for leakage amounts and start times, and use these thresholds to determine the 

extent to which the initial AOR is defined. This approach is feasible if combined with the 

requirement to remodel and reassess the site every 10 years, as is required in the proposed 

rule. With the availability of more data, the initial models could be verified or improved.  

 

Previous studies of the assessment of sites at the Frio, Weyburn and Gorgon sequestration 

projects have used a number of different strategies to deal with uncertainty.  The 

strategies for Frio and Weyburn include post-injection analysis, which confirms that the 

initial modeling of the CO2 plumes were not accurate, as they did not account for 

geologic characteristics that influenced the plume migration. These strategies include i) 

sensitivity analysis for parameters included in models, ii) establishing a baseline for 

measurements can then be used to compare new data with, iii) iterative modeling using 

previously unavailable data and iv) monitoring of the sites (Bacanckas and Karimjee, 

2009).  While each of the sites used a subset of these, it is clear that all of these strategies 

can be incorporated in a single plan, which allows for continuous evaluation of the 

injected CO2. 
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4.3 Implications of uncertainty on the feasibility of geologic storage as a 

carbon mitigation option 

For climate policy, the long-term implications of geologic storage are extremely 

important. Even if the available storage capacity is a fraction of what the initial estimates 

are, it would still be enough to be an important component of the medium to long term 

solutions to prevent the addition of CO2 into the atmosphere. The debates that make 

geologic storage controversial concern permanence of storage and leakage rates. This 

modeling exercise indicates that in the long run, the chances of large amounts of leakage 

are extremely small, and the amounts that may potentially escape into the atmosphere are 

fractions of a percentage of the total injected volume. Additionally, leakage would likely 

occur over a time frame of more than a thousand years, which is difficult to address in 

current policy discussions. The results here are consistent with the statement in the IPCC 

report (IPCC, 2005) that suggests that leakage is very likely to be less than 1% over 100 

years, and likely to be less than 1% over 1000 years. 

 

This implies that given the extent of storage security as represented in this model, issues 

around credits for leaked amounts are of a lesser impact, since the amount that will leak 

is so far out in the future and even then, such a small relative volume to that which is 

being stored, this should not be a hurdle in the development of climate policy. However, 

there is still a non-zero probability of leakage within a short time span, and in the context 

of a price on CO2 that would result from a climate policy, this would need to be 

addressed in terms of carbon accounting and credits. 

 

One aspect that is important to take into consideration is the applicability of the 

regulatory framework. Currently, the proposed rule is under the Safe Drinking Water Act, 

the mandate of which is to protect any potable groundwater from contamination. It does 

not take the effects of direct leakage into the atmosphere on carbon accounting and 

climate change. Since the entire purpose of geologic storage is for climate mitigation 

there is a need for an additional set of rules to ensure that the injected CO2 is accounted 

for accurately. 
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Policy discussions regarding CCS suggest financial incentives for storage in the form of 

credits per ton of CO2 sequestered. The volume of CO2 injected into a site is easy to 

measure by measuring the flow rates in the injection wells, and this can be used for the 

initial assignment of credits. However, in the event of leakage, there is no clear way for 

the recipient of the initial credit to compensate for the amount lost. In a regulatory 

environment where this is a price on CO2, a gap in the ability to account for CO2

could leave CCS vulnerable to financial discrepancies and inefficiencies. Additionally, in 

the presence of national caps and targets for CO2 mitigation, it is important to have a 

clear methodology to account for any amount that leaks back into the atmosphere, and a 

method to compensate for the initial credit that was given. 

 

This poses a challenge, as there is no direct way to accurately measure the amount of CO2

that escapes, or that remains trapped in the formation. With the uncertainty that is present 

in the migration of the plume, a measurement, monitoring and verification (MMV) plan 

needs to be in place. However, even MMV technology is limited in its accuracy, and is 

heavily reliant of the modeling of the subsurface that we have already demonstrated as 

being sensitive to variability in the geology. In the model we used, the presence of a leak 

would be easy to detect because of the assumption that the fracture is perfectly permeable 

and that all the CO2 that reaches it escapes instantaneously. The plume could be tracked 

seismically and the fracture could be located, and the leakage rate could be monitored. In 

reality, both these assumptions are not physically realizable, and represent a worst case 

scenario in this analysis. The leakage amounts that are shown in the results of this 

exercise are extremely small; moreover, they are cumulative over the entire lifetime of 

the leakage, and so the annual rates are even smaller amounts. Based on this model, it 

would be extremely difficult to detect any leakage from the sites that may occur from a 

fault. 

 

In order to be prepared for the case that there is leakage of large amounts of CO2 in the 

short-term, as low as the probability may be, a system that can account for leakage must 

be designed. One option is to use bonds, or similar financial instruments that can be 

traded on a market, that lose their value as CO2 leaks from storage.  Additionally, in order 
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to compensate for the leakage, the owner of the bond would have to compensate the 

regulatory body with a CO2 emission certificate. The bond would be a guarantee of the 

security of the stored CO2, and any loss in value would be a devaluation in the asset. 

Since an operator would not want to lose value on their assets, they would have an 

incentive to ensure the storage permanence of the injected CO2.  

 

Another option that is discussed is of temporary and partial credits for the stored CO2, 

that only become permanent and complete once a certain pre-determined period of time  

for which there is an increased risk of leakage has passed (Held, Edenhofer, Bauer, 

2009). All these accounting methods, however, are dependent on accurate MMV of the 

injected CO2, which is an active area of research in CCS.  

 

Any policy that is designed for geologic storage should take uncertainty into 

consideration, and include risk management strategies for events that while highly 

unlikely, still have a non-zero chance of occurrence. With the proper management and 

monitoring of sites, the establishment of proper liability regimes, accounting rules and 

compensation mechanisms for leakage, geologic storage can be a safe and effective 

carbon mitigation tool to combat climate change. 
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Chapter 5: Conclusions and Future work 

Uncertainty analysis was conducted on a residual trapping model for geologic storage in 

saline aquifers. The conclusions that are drawn from this work are based on the 

uncertainty for this particular model. The use of other models that incorporate different 

scientific processes would further improve our understanding of uncertainty in geologic 

storage. 
 

5.1 Conclusions 

Uncertainty in geologic parameters has a significant effect on capacity estimates. 

Capacity estimates can vary by a factor of four in the presence of uncertainty in geologic 

parameters. By performing a probabilistic analysis, it is possible to narrow the range of 

values that are more likely than the extreme values. The Monte Carlo simulation also 

demonstrates that the expected value of the distribution of the capacity is not the same as 

the expected value that can be calculated deterministically from the expected values of 

the input parameters. This indicates the importance of performing uncertainty analysis. 
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Residual gas saturation and relative permeability of CO2 have the maximum 

contribution to uncertainty in geologic storage in saline aquifers. 

The sensitivity analyses performed on the capacity model indicate that residual gas 

saturation, , and the endpoint relative permeability of CO2, k*
rg, are the largest 

contributors to the uncertainty of the capacity estimates. Both of these values are easily 

measurable in a lab setting from core samples, and more extensive research can provide 

more extensive data from which the distributions of these parameters can be determined. 

Additionally, this points to the importance of multiple core samples in the process of site 

characterization 

 

Correlation between geologic parameters that characterize the properties of the 

rock can vary the capacity estimates. 

Assuming different correlations between the residual gas saturation  and the connate 

water saturation Swc varies the distribution of capacity estimates, indicating the need for 

further research into understanding the properties of the rock.  

 

The likelihood of leakage decreases as the distance of a fracture away from the 

injection well increases. 

As the plume migrates after injection, the amount of mobile CO2 decreases and the 

amount that is trapped increases as the further away it travels from the injection well. 

This indicates that when fractures are further away, there is greater likelihood that the 

entire plume is trapped and therefore no mobile CO2 reaches the fault, resulting in a 

lower likelihood of leakage. This suggests that when characterizing a site for injection, it 

is more important to assess areas closer to the injection well as opposed to areas much 

further away.   

 

The quantity of CO2 that leaks after injection, as a percentage of total injected 

volume of CO2 is extremely small. 

The quantity of CO2 leaked in the simulations is on the order of fractions of a percentage 

of the total injected volume. This suggests that residual trapping is an effective trapping 
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mechanism on its own, and can store large volumes, making geologic storage effective 

for carbon mitigation. 

 

The time to the start of potential leakage of CO2 after injection is extremely long. 

The expected time to the start of leakage is on the order of magnitude of thousands of 

years. This indicates that geologic storage has the potential to be a safe short to medium 

term carbon mitigation technology. While there is a very low non-zero probability of 

leakage in the short term, risk management strategies should be established using the 

appropriate policy and regulatory tools to ensure safety and proper accounting of CO2 in 

the event there is leakage. 

 

5.2 Future Work 

 
Further work in this analysis would extend the uncertainty analysis to better understand 

the behavior of the injected CO2. The analysis can be extended by including:  

• More leakage scenarios, with different injection rates to reflect the different 

constraints- whether scientific, technical, or regulatory, that may restrict injection.  

• Different assumptions about the distribution of fractures. Uncertainty analysis on 

the size of the fractures can be included as well. 

• Uncertainty in the geometry of the basin, which we have assumed as being 

constant. This can also be treated as variable in order to better reflect the 

uncertainty in the entire basin.  
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