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Abstract

In carbon capture and storage (CCS), COgq is captured at power plants and then injected
into deep geologic reservoirs for long-term storage. While CCS may be critical for the
continued use of fossil fuels in a carbon-constrained world, the subsurface behavior of COq
remains poorly understood, which has contributed to the absence of government policy to
implement CCS. In this Thesis, we use simulations, experiments, and theory to clarify the
fluid mechanics of CO4 storage, with the goal of informing two practical questions.

The first question is, how much COs can be stored in the United States? This question
is important to clarify the role of CCS among the portfolio of other climate-change mitiga-
tion options, such as renewable energy and reduced energy consumption. To address this
question, we develop models of COs injection and the post-injection migration, and apply
them to several reservoirs in the US. We use the models to calculate the total amount of
CO4 that can be stored in these reservoirs without hydraulically fracturing the caprock or
allowing the COs to migrate to a major leakage pathway. We find that the US has sufficient
storage capacity to stabilize emissions at the current rates for at least 100 years.

The second question is, what are the long-term dissolution rates of COq into the am-
bient groundwater? This question is important because dissolution mitigates the risk of
CO> leakage to shallower formations or the surface. We address this question for storage
in structural and stratigraphic traps, which are promising locations in a reservoir for injec-
tion and will likely be the first sites of large-scale CCS deployment. We describe several
mechanisms of COsy dissolution in these traps and develop models to predict the dissolu-
tion rates. We apply the models to relevant subsurface conditions and find that dissolution
rates vary widely depending on the reservoir properties, but that thick reservoirs with high
permeabilities could potentially dissolve hundreds of megatons of CO5 in tens of years.

Thesis Supervisor: Ruben Juanes
Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

A growing body of research indicates that anthropogenic CO5 emissions are a major con-
tributor to climate change [51], and suggests that avoiding the most damaging effects of
climate change requires stabilizing worldwide emissions at the current rate or lower [70, 163].
The most comprehensive and promising proposals for achieving stabilization include sev-
eral approaches, such as reducing energy consumption; increasing the efficiency of vehicles,
buildings, and power plants; and replacing fossil fuels with low-carbon energy sources [133].
To reduce emissions in the short term while fossil fuels continue to supply most of the

planet’s primary power, carbon capture and storage (CCS) may be critical.

In CCS, COs is captured from the flue gas of power plants or factories, compressed into a
supercritical fluid, and then injected underground into reservoirs like deep saline aquifers for
long-term storage [80, 92, 142, 19, 131]. These aquifers are typically one to three kilometers
underground, ten to five hundred meters thick, and hundreds of kilometers long. They
usually consist of a layer of cemented sediments covered by a low-permeability layer called
a caprock that retards the upward flow of COy back to the surface. They are saturated
with water that ranges from brackish to at least ten times as salty as seawater [85]. Due to
their depth and high salinity, they are almost never used for drinking or irrigation water,

but rather have been used to store industrial waste for decades [80].

While CCS is a promising option to reduce anthropogenic emissions, the injection of
CO>2 and its behavior in the subsurface remain poorly understood. For example, some
studies claim that the rise in reservoir pressure accompanying large-scale COq injection

will trigger earthquakes and cause leakage, rendering CCS “a risky, and likely unsuccessful,
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strategy for signicantly reducing greenhouse gas emissions” [172]. In contrast, others cite
the successful history of waste-water disposal in the subsurface [29] and argue for more
research on injection-related phenomena [83]. The behavior of COq after injection is also
contested. While some studies find that convective dissolution of COs into the ambient
groundwater depends on properties such as the diffusivity and reservoir thickness [11, 123],
others find it is independent under certain conditions [135, 69]. This type of uncertainty
in post-injection behavior is reflected in uncertainty of storage capacities: some studies
estimate that the US can store only a few years of emissions from coal- and gas-fired power
plants [20], while others predict storage for thousands of years of emissions [120].

In this Thesis, we use simulations, theory, and experiments to clarify the subsurface
behavior of COs during CCS. In Chapter 2, we develop models of CO4 injection and post-
injection migration, and use them to quantify the storage capacity of 11 deep geologic
reservoirs in the United States. The results have been published previously [150]. In
Chapter 3, we briefly study a more abstract problem—the evolution of miscible gravity
currents in porous layers—to develop part of the theoretical basis required to investigate
COg dissolution. These results have also been published previously [148]. In Chapter 4, we
apply and extend the theory from Chapter 3 to study COs dissolution during storage in

structural and stratigraphic traps.
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Chapter 2

The lifetime of carbon capture
and storage as a climate-change

mitigation technology

2.1 Summary

In this chapter, we clarify the potential of carbon capture and storage to mitigate emissions
in the US by quantifying the nationwide storage capacity. We develop a storage-capacity
supply curve that, unlike current large-scale capacity estimates, is derived from the fluid
mechanics of COs injection and trapping, and incorporates injection-rate constraints. We
show that storage supply is a dynamic quantity that grows with the duration of CCS, and
we interpret the lifetime of CCS as the time for which the storage supply curve exceeds the
storage demand curve from COs production. We show that in the US, if COs production
from power generation continues to rise at recent rates, then CCS can store enough COq
to stabilize emissions at current levels for at least 100 years. This result suggests that the
large-scale implementation of CCS is a geologically-viable climate-change mitigation option

in the US over the next century.

2.2 Introduction

Carbon dioxide is a well-documented greenhouse gas, and a growing body of evidence indi-

cates that anthropogenic CO2 emissions are a major contributor to climate change [51]. One
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promising technology to mitigate COy emissions is carbon capture and storage (CCS) [92,
133, 80]. In the context of this study, CCS involves capturing COgy from the flue gas of
power plants, compressing it into a supercritical fluid, and then injecting it into deep saline
aquifers for long-term storage [80, 131]. Compared to other mitigation technologies such as
renewable energy, CCS is important because it may enable the continued use of fossil fuels,
which currently supply over 80% of the primary power for the planet [70, 116]. We focus
on COgy produced by power plants because electric power generation currently accounts
for more than 40% of worldwide COq emissions [78], and because power plants are large,
stationary point sources of emissions where COy capture technology will likely be deployed
first [80]. We further restrict our analysis to coal- and gas-fired power plants because they
emit more COs than any other type of plant: since 2000, they have emitted approximately
97% by mass of the total COy produced by electricity-generating power plants in the US
[158]. We focus on storing this COsz in deep saline aquifers because they are geographically

widespread and their storage capacity is potentially very large [80, 131].

We define the storage capacity of a saline aquifer to be the maximum amount of COq
that could be injected and securely stored under geologic constraints, such as the aquifer’s
size and the integrity of its caprock. Regulatory, legal, and economic factors such as land-
use constraints and the locations of power plants will ultimately play an important role in
limiting the degree to which this capacity can be utilized [10, 120, 38|, but they do not

contribute to the estimates of storage capacity in this study.

Although CCS has been identified as the critical enabling technology for the continued
use of fossil fuels in a carbon-constrained world [116], the role it can play among the portfolio
of climate-change mitigation options remains unclear. This is due in part to uncertainty in
the total amount of CO2 that CCS could store, and therefore uncertainty in the timespan
over which it could be extended into the future. Storage capacity estimates for the United
States, for example, range over almost four orders of magnitude: from about five [20] to
20,000 billion metric tons (Gt) of CO2 [120], with other estimates falling in between [39].
This uncertainty in capacity leads to large uncertainty in the potential lifetime of CCS: at
a storage rate of 1 Gt COq per year, which is about one sixth of US emissions [158], CCS

could operate from 5 to 20,000 years.

An important factor contributing to the uncertainty in storage capacity is the high un-

certainty in the hydrogeologic data for deep saline aquifers—recent estimates [120] make use
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of much larger and more sophisticated datasets than earlier estimates [20]. The large range
is also due to the complexity of the storage process: since the subsurface fluid dynamics of
COs storage is complicated, studies use different simplifying assumptions and methodologies
to estimate large-scale capacity, such as assuming that the entire pore volume of an aquifer
is saturated with dissolved COq [39], or extrapolating storage capacities from an ensemble
of local-scale simulations [10, 120]. Moreover, the impact of injection-rate constraints due
to pressure buildup is not clear. For example, some studies of COg injection support the
adoption of CCS with injection-rate management [22], while others conclude that injection
constraints render CCS infeasible [44].

Here, we clarify the potential of CCS to mitigate emissions in the US. We develop
a storage capacity model that advances previous efforts by explicitly capturing the fluid
dynamics of COq storage as well as injection-rate constraints. We treat geologic capacity as
a supply of storage space, and the amount of COs that needs to be stored as a demand for
that space. We then interpret the lifetime of CCS in the US as the time for which supply

exceeds demand.
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Figure 2-1: Residual and solubility trapping are the key trapping mechanisms that contribute to
the COs storage capacity. Inset (a) shows blobs of gas immobilized by residual trapping in an
experimental analog system: a glass-bead pack saturated with water. Inset (b) shows solubility
trapping in a different analog system: a Hele-Shaw cell saturated with water, topped with a source
of dense, dyed water. As in the COs system, in which the brine with dissolved COs is denser than the
ambient brine, dissolution occurs via finger-like protrusions of dense fluid. (c¢) We model trapping
at the large scales relevant to a nationwide analysis, and account for the injection and migration
of CO2. We consider a linear arrangement of injection wells in a deep section of the aquifer [126].
Initially, each well produces a radial CO5 plume, which grows and eventually interferes with those
from neighboring wells, leading to a problem that can be approximated as two-dimensional on a
vertical cross section. Trapping occurs primarily after injection, when the COs migrates due to
the aquifer slope and the natural head gradient. As the buoyant COy plume rises and spreads
away from the well array (dark gray), residual trapping immobilizes blobs of COs in its wake (light
gray) [81, 67, 82], and solubility trapping shrinks the plume from below (blue) [47, 138].
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2.3 CO;, migration and pressure buildup

both constrain storage capacity

2.3.1 CO, trapping and migration-limited capacity

To develop the geologic storage supply curve, we first consider how much CO2 can be
trapped in the pore space of an aquifer. Trapping is essential to prevent upward leakage of
the buoyant COg to shallower formations or the surface [21, 129]. While trapping can be an-
alyzed over a wide range of length scales, we consider trapping at the large scale of an entire
geologic basin because large volumes of CO2 will need to be stored to offset emissions [133].
We consider residual trapping, in which blobs of COy become immobilized by capillary
forces [81], and solubility trapping, in which CO4 dissolves into the groundwater [47, 138],
since these mechanisms operate over relatively short timescales and provide secure forms
of storage (Fig. 2-1a,b). To estimate capacity at the basin-scale, we develop an upscaled
model for CO2 migration and trapping that is simple, but captures the key macroscopic
physics of these pore-scale trapping processes. The model also incorporates CO5 migration
due to the aquifer slope and natural head gradient, since migration critically impacts trap-
ping. For example, the tendency of COs to migrate in a long, thin tongue along the caprock
reduces the effectiveness of residual trapping, which occurs in the wake of the plume, but
increases the effectiveness of solubility trapping, which occurs primarily along the underside
of the plume (Fig. 2-1c). Modeling migration is also essential to ensure that the mobile COq
becomes fully trapped before traveling to leakage pathways such as outcrops, large faults, or
high-permeability zones in the caprock. We make many simplifying assumptions in deriving
the trapping model, including homogeneity of the reservoir and vertical-flow equilibrium,
and arrive at a nonlinear partial differential equation (PDE), which we solve analytically
in some limiting cases, but numerically in general [107] (see Supplementary material, §2.6).
While the model is complex enough to permit aquifer-specific capacity estimates based on
more than twenty parameters, it is simple enough to be applied quickly to a large number

of aquifers.

2.3.2 Pressure dissipation and pressure-limited capacity

Although an aquifer’s trapping-based storage capacity may be large, it may be impossible

to utilize the entire capacity due to limitations on the injection rate [22, 44]. If the injection
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Figure 2-2: We estimate the nationwide storage capacity from 20 arrays of injection wells in
11 aquifers. We select these aquifers because they are large, exhibit few basin-scale faults, and
have been relatively well characterized [76]. This map shows the locations of the aquifers and
their storage capacities for an injection period of 100 years (capacities for different injection periods
are in Table S29). Capacities in boldface italics are constrained by pressure; otherwise, they are
constrained by migration. The map also shows the ultimate COy footprints for those capacities,
which correspond to the areas infiltrated by migrating, free-phase CO2 before it becomes completely
trapped.
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rate is too high, the rise in pressure may create fractures or activate faults. Fracturing and
fault activation could induce seismicity, or could create or enhance pathways by which CO»
could leak [80, Ch.5].

We translate sustainable injection rates into pressure-limited storage capacities (see
Supplementary material, §2.6). We calculate the pressure-limited capacity of an aquifer
as the total amount of COy that can be injected over a duration 7" without causing a
tensile fracture in the caprock [171]. We neglect multiphase flow effects on the pressure
evolution, motivated by the observation that the buoyant COo will spread mostly along
the top of the aquifer, and thereby occupy a small fraction of the aquifer volume. Rather
than assuming that aquifers are closed [44], we account for pressure dissipation vertically
through the geologic basin and interpret geologic cross sections to determine appropriate
lateral boundary conditions [22]. As with the trapping model, the pressure model is a
PDE that we solve analytically in some limiting cases, but numerically in general (see
Supplementary material, §2.6).

While the trapping-based supply curve of an aquifer is independent of time, the pressure-
limited supply curve is dynamic, growing approximately as T/ for short injection dura-
tions. This scaling reflects the diffusive character of pressure dissipation in porous media.
The trapping-based and pressure-limited supply curves always exhibit a crossover as a func-
tion of injection duration, and the complete storage supply curve is the lower of these two
curves: it is the pressure-limited supply curve for short injection times, but is the migration-

limited supply curve for long injection times (Fig. 2-4a).

2.3.3 US storage capacity

We calculate the storage supply curve for the entire US as the sum of the supply curves
for eleven major deep saline aquifers, assuming that COg injection begins simultaneously in
each aquifer. The footprints of trapped CO2 in the aquifers studied illustrate the geographic
distribution of storage capacity in the US (Fig. 2-2). We characterize the geology and
hydrogeology of each aquifer to determine which portions are suitable for sequestration,
considering several criteria that include: (1) the depth must exceed 800 m so that COy is
stored efficiently as a high-density, supercritical fluid; (2) the aquifer and caprock must be
laterally continuous over long distances; and (3) there must be very few faults that could

serve as leakage pathways (see Supplementary material, §2.6). Although abandoned wells
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can also serve as leakage pathways [129], data about their locations and integrity is not
sufficient to incorporate them into this large-scale study.

Our results for the storage supply of individual aquifers agree well with published es-
timates. For the portion of the Mt. Simon Sandstone located within the Illinois basin
(Region a, see Supplementary material, §2.6), the NETL Sequestration Atlas [120] reports
a migration-limited capacity of 11-151 Gt, and Birkholzer et al. [22] estimate a pressure-
limited capacity of about 13 Gt for an injection time of 50 years. These values compare
well with our estimates: our estimate of the migration-limited capacity is 88 Gt, which falls
in the center of the range reported by the NETL, and our estimate of the pressure-limited
capacity for an injection time of 50 years is 15 Gt, which is about 15% higher than the
estimate by Birkholzer et al.

In addition to calculating a baseline storage supply, we perform a sensitivity and un-
certainty analysis for each aquifer. While there are many types of uncertainty in storage
supply, we consider the impact of statistical uncertainty in the input parameters to estimate

the standard deviation in storage supply (see Supplementary material, §2.6).
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Figure 2-3: (a) Worldwide emission pathways that would stabilize the atmospheric concentration of
COg4 exhibit a characteristic shape: emissions rise to a maximum, decrease, and then level off (dashed
gray curve, for stabilization at 750 ppm CO3) [163]. Our model of COy production pathways in the
US (solid black curve) is a simplification of the initial part of that shape. The model is parameterized
by two variables: the time required to return to current production rates, 7', and the slope of the
linear increase, Gp. Ejy is the current production/emission rate. (b) We model the COs storage
rate as a fraction, r, of the COs produced from coal- and gas-fired power plants at rates above the
current rate. The storage demand is the cumulative CO2 stored over a storage pathway, which is
the total area under the pathway (shaded blue).
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2.4 Storage demand vs. supply
dictates CCS lifetime

To estimate the demand for CO4 storage, we first model future CO2 production from coal-
and gas-fired power plants. We assume that the rate of COy production from these plants
will increase linearly, reach a maximum, and then decrease linearly with equal and opposite
slope until returning to the current rate (Fig. 2-3a). While future CO2 production trends
will likely be complex, we use this simple model because it captures the essential features
expected in future trends: an increase in the rate of production as energy demand grows
and fossil fuels continue to supply the energy, and then a decrease as low-emissions energy
sources begin to replace fossil fuels. We assume that the COq injection rate in each aquifer
also follows this ramp-up, ramp-down trend.

This CO4 production model has two key parameters: the slope of the linear increase,
G, and the time at which production returns to the current rate, 7'. Based on data from
the electricity sector in the US over the past four decades, we estimate the recent growth
rate in production to be Gpa45 million tons of COs per year per year (Mt/yr?) [79]. This
rate has slowed recently (~30 Mt/yr? over the past two decades, or ~20 Mt /yr? over the
past decade), in part due to growth coming more and more from gas-fired plants instead
of coal-fired plants. However, we choose the higher historic rate based on our expectation
that the deployment of CCS and the abundance of coal will promote the construction of
coal-fired plants at rates similar to those in previous decades, and that those plants will be
capture-ready. The variable T describes different trajectories of the COs production rate,
which we call production pathways in analogy to emission pathways [163].

We define the COs storage rate to be a constant fraction, r, of the surplus COs produc-
tion rate, or the rate at which CO, is produced above the current rate. As a result, storage
pathways exhibit the same shape as production pathways: the rate of storage increases
linearly, reaches a maximum at the same time production reaches a maximum, and then
decreases linearly, returning to zero when production returns to the current rate. The stor-
age demand is the cumulative mass of COg stored over an entire storage pathway: %GI,T2
(Fig. 2-3b). This formula indicates that r can also be used to capture uncertainty in the

production growth rate, G,.

The timespan over which CCS can be extended is the time for which the storage supply
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curve exceeds the storage demand curve. The time at which the curves intersect corresponds
to the longest storage pathway for which there is sufficient storage supply. If the storage
demand is all of the surplus COq produced (r=1), the demand curve crosses the supply curve
at T=120 years, with a range of T=95 to 165 years (Fig. 2-4b). If the storage demand is
one half of COy produced (r=0.5), the intersection occurs at T=190 years, with a range
of T=145 to 250 years. If the storage demand is one seventh of the COqy production, as

proposed in [133], the crossover time is at least 300 years.
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Figure 2-4: (a) The storage supply curve of a deep saline aquifer is constrained by both CO4 trapping
and pressure buildup. For short injection times, pressure buildup is the more limiting constraint,
and the supply curve increases approximately as the square root of the injection duration, 7*/2 (see
Supplementary material, §2.6). For longer injection times, trapping is the more limiting constraint
and the capacity becomes independent of injection time. This is shown for Region b of the Mt. Simon
Sandstone, where trapping becomes limiting after about 80 years. The shaded areas are uncertainty
envelopes based on one standard deviation (see Supplementary material, §2.6). (b) The storage
supply curve for the entire US (black curve) is the sum of the supply curves of all the aquifers. The
uncertainty envelope again represents one standard deviation (shaded gray). The storage demand
curves represent storing 100%, 50%, and 15% of all the surplus COy produced at the recent growth
rate of 45 Mt /yr?. The intersection of these curves with the capacity curve marks the maximum time
over which CCS can be extended. For a storage demand of all surplus production, the demand curve
intersects the supply curve at ~120 years, indicating that CCS can stabilize atmospheric emissions

in the US for at least a century.
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2.5 Discussion and conclusions

We have shown that in the US, the storage supply from 11 major deep saline aquifers is
sufficient to store large quantities of CO; for long times. If the task of stabilizing emissions
is divided among several technologies such that the storage demand for CCS is one seventh
of the CO5 produced, CCS can operate for over 300 years. If the storage demand is all
the surplus COy produced, CSS can operate for at least a century. This result suggests
that geologic storage supply will enable CCS to play a major role among the portfolio of

climate-change mitigation options.

Although the storage supply is large, many regulatory and economic factors will play an
important role in determining the degree to which this storage supply can be utilized. The
successful large-scale deployment of CCS will require, for example, detailed exploration for
site selection [58] and comprehensive policy to establish safety and monitoring regulations
and drive adoption. Absence of comprehensive policy, in particular, has been identified as

the key barrier to the deployment of CCS [2].

Understanding the lifetime of CCS is essential for informing government policy. Since
storage supply depends fundamentally on the duration of CCS, policymakers should consider
the total time over which CCS will be deployed to identify storage targets or deployment
rates that comply with geologic constraints. Alternatively, policymakers should set storage
targets recognizing that they can only be achieved for a finite time. Policy for the devel-
opment of low-emissions energy sources should also consider the lifetime of CCS, which
constrains the timescales over which these technologies must be deployed to eventually

replace fossil fuels.

2.6 Supplementary material

Here we present our calculation for the growth rate in CO9 production, describe our math-
ematical models for COy trapping and pressure build-up, and explain our methodology
for applying the models to calculate storage capacity. We also describe the hydrogeologic

setting of the aquifers we study and their storage capacities.
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2.6.1 Growth rate of CO, production

We calculate the growth rate of COo production in the United States based on historical
data of electricity production from 1972 to 2008 [79]. From this data, we calculate the coal
and gas resources consumed each year by assuming an efficiency of 33% for coal and 44%
for gas [157, Tables A2, A8]. We then calculate the CO2 produced each year by assuming
90 Mt CO;y per exajoule of coal consumed and 50 Mt COgy per exajoule of natural gas
consumed [157, Tables A2, A18]. The growth rate of CO2 production is then the slope of

the linear regression of this data: 45 Mt COq per year per year.

2.6.2 CO, trapping model
Mathematical model

The volume of COg, V,, that can be trapped in a deep saline aquifer is usually calculated

as a fraction of the total available pore volume [10, 24]:
Vg = V(1 — Sye)e, (2.1)

where V is the aquifer volume, ¢ is the porosity, Sy. is the connate water saturation,
and ¢ is the efficiency factor. We calculate the efficiency factor using a model for how
CO4 migrates through an aquifer and becomes trapped through solubility and capillary
trapping [106, 107]. All parameters in the model are defined in Table 2.1. The major
assumptions in the model are: (1) the interface between the CO2 and brine is sharp [17, 77,
128, 67]; (2) capillary pressure effects are negligible; (3) the flow is predominantly horizontal
(Dupuit approximation) [17, 168]; (4) CO2 leakage through the caprock is negligible; (5) the
aquifer is homogeneous, isotropic, and incompressible; (6) the fluids are incompressible and
their properties are constant; and (7) during the dissolution of COsz into brine, the total

fluid volume is conserved.

Injection period We divide the model into two parts: the injection period and the post-
injection period (Fig. 2-5). During injection, the thickness of the mobile CO plume, hg, as

a function of time, ¢, and distance along the aquifer, x, is [128, 82, 106, 107]:

(1= Suwe)$Othg + 0 F, =0, (2.2)
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(A) CO, injection

mobile CO, l/'x
S=25, g

Q/2

(B) Post-injection migration

mobile CO,
S=28,

brine with
residual CO, dissolved CO,

S — Sgr Xv

Figure 2-5: (A) During the injection period, COs enters the aquifer at a high flow rate @, displacing
brine to its connate saturation S,,... Since CO3 is buoyant and less viscous than the brine, the injected
CO;, forms a gravity tongue [128]. No residual trapping occurs since there is little if any imbibition,
and solubility trapping is negligible because the injection period is in general much shorter than the
time required for dissolution [107]. (B) Once injection stops, the CO5 plume migrates away from
the well array due to buoyancy and the natural hydraulic gradient. Gravity tonguing becomes more
severe, with the plume forming a thin wedge along the bottom of the caprock. At the trailing edge
of the plume, CO5 becomes trapped due to capillarity [81]. Along the bottom of the plume, COq
dissolves into the brine via convective mixing [47].
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Table 2.1: The input parameters used in our models and their symbols. Dimension abbreviations
are as follows: L = length, T = time, M = mass, and 6 = temperature. Parameters written in
Roman are raw input parameters; parameters written in italics are derived parameters.

Parameter [dimensions] Symbol
Gravitational acceleration [LT~2] g
Residual CO4 saturation [—] Sgr
Connate water saturation [—] Swe
Endpoint relative permeability to CO2 [—] k.
Coefficient of COg-saturated-brine flux [—] !
Compressibility [M™'LT? c
Undrained Poisson ratio [—] v
Geothermal gradient [OL™!] Gr
Surface temperature [©] T,
Depth to top of aquifer [L] D
Depth from aquifer to bedrock [L] B
Net aquifer thickness [L] H
Length of domain for migration model [L] L,
Width of well array [L] W
Distance from well array to nearest pressure boundary [L] Lpmin
Distance from well array to farthest pressure boundary [L] Lpmaz
Porosity [—] 1)
Caprock slope [—] 9
Darcy velocity [LT '] U
Aquifer permeability [L?] kagq
Caprock permeability [L?] ke
Salinity [ML %] s
Average bulk density of the overburden [ML ™3] Do
Average density of water in overburden [ML ™3] Pw
Lateral overburden permeability [L?] ks
Vertical overburden permeability [L?] k.
CO; solubility [—] X
Brine density [ML™3) Pw
COs density [ML™?] Pg
COz-saturated-brine density [MLfB] Pd
Brine viscosity [ML™'T™?] Hw
COs wiscosity [ML™'T™] lig
Fracture pressure [ML71T72] Pfrac

where F, gi is the flux of CO9 during injection. Note that the model is one dimensional since
we consider injection from a long, line-drive array of wells, as shown in Figure 2. Since the
flux of CO2 due to injection is typically much larger than fluxes due to buoyancy or the

natural hydraulic gradient, the flux term is given by

Q

Fi=sof, (2.3)

where Q/W is the injection rate per unit width of the injection-well array. The fractional

flow function f is given by
_ hg
~ hg+ M(H — hy)’

f (2.4)
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where H is the thickness of the aquifer and M is the mobility ratio,

I
M = krgﬁ (2.5)

Post-injection period Once injection stops, the CO2 plume migrates away from the
well array. During migration, it becomes trapped by capillarity at the back of the plume,
and by dissolution along the bottom of the plume until the underlying brine is saturated
(Fig. 2-5). To determine when the brine is saturated, we model the transport of dissolved

COg in the brine in addition to the migration of the free-phase CO2 plume.

Plume model. The thickness of the plume, hg, during post-injection is also governed

by a one-dimensional hyperbolic equation:
(1 = Swc)$RIthg + 8, (FF) = L, (2.6)

where F} is the COy flux during post-injection. R is a conditional coefficient that accounts
for residual trapping:

~ 1 it Othy > —qa/®,

1 —T otherwise,

where I is the capillary trapping coefficient, which quantifies the fraction of pore space that

will be occupied by residual COa:

S
= SAN 2.8
5. (2.8)
qq is the volumetric flux of CO leaving the plume due to dissolution:
aXoy — pw)9ka
=X ¢(pa — pw)g .. (2.9)

Mo

where « is a constant roughly equal to 0.01 [135], Ap, is the density difference between
brine and COsg-saturated brine, and x, is the solubility of COs in brine, expressed as the

volume of free-phase COy that can be dissolved per unit volume of brine saturated with

COa.
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During post-injection, the flux is given by:

(Pw — pg)gkaghky, sin 19(

w

FP=UHf +

1— f)hy, (2.10)

where U is the Darcy velocity of the natural groundwater flow and ¥ is the slope of the
caprock. The first term expresses the flux of COy due to the natural hydraulic gradient and

the second term expresses the flux due to upslope migration.

The right-hand side of the post-injection model (Eq. 2.6) is a loss term (£ < 0) that

accounts for dissolution:

r —R(l — ch)qd if hy < H — hg,

0 otherwise,

where hg is the effective height of the water column under the plume that is saturated with
COa4. Substituting each of these expressions into Eq. 2.6 yields the complete CO4 trapping

model:

(Pw = pg)gkaqky, sin v
Hw

(1 — Sue)ROthy + 0 (UHf + (1- f)hg> = L. (2.11)

COg-saturated-brine model. The model for the migration of COs-saturated brine

tracks the thickness of the region of brine below the plume that is saturated with COq, hy:
Xo®O0thg + XWGQ,F(? = —L — XoSwepOihy, (2.12)

where F7 is the flux of COg-saturated brine. The thickness of the COs-saturated region
grows as a result of dissolution via the —L term (recall that £ < 0), which previously
appeared as a loss term in the CO2 model.

The flux of COg-saturated brine F may occur due to a natural hydraulic gradient or

the slope of the aquifer:

(Pg = Pw)gkaqky, sind
Hg

FP=UH(1- f)— (1= f)hy. (2.13)

We neglect fluxes that may be caused by the density difference between the brine and

COq-saturated brine. We also neglect diffusion and dispersion.
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Non-dimensional form of the equations. We choose the following non-dimensional

variables:

ng:hg/Ha nd:hd/H’ T:t/TC7 sz/Lm

where L. = QT;/2W (1 — Syc)¢pH, with T, = T; being the injection time.

variables, the injection model (Eq. 2.2) becomes:
Orng + %ng =0.
The model for the CO2 migration during post-injection (Eq.2.11) becomes:
0., + Njdef + Noe [(1— Png)] = — RNy
and the model for the COg-saturated brine (Eq. 2.12) becomes:

~ - N
Rlﬁfﬁd + (1 - ch)Nfaffd - (1 - ch)Nsaf (fdng) = R,Fj - chaT"?gv

where:
E’ 1 if 8Tng > — Ny,
1 —T otherwise.
and
Mn Nd
fng) = J . fa(ng,na) = -
0) = Mg+ (1 =y 2000 = 3 =)

(2.14)

With these

(2.15)

(2.16)

(2.17)

The coefficients in the equations are the flow number, Ny, and the slope number, Nj:

N fc (1 - ch)¢ug '

(2.18)

which express the strength of the natural groundwater flow and the aquifer slope in driving

plume migration. The dissolution number, N, expresses the strength of dissolution:

Apdgkaq k;rTC
X,

Ny = Hon, if n(&,7) >0 and nq(&,7) < (1 —n(&, 7)),

0 otherwise.
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Migration-limited capacity

In an aquifer, a given volume of injected COo will migrate a particular distance before
becoming completely trapped by capillarity and solubility [67, 82, 106, 107]. There is a
particular injection volume for which the COy plume will just reach the boundary of the
aquifer. We define this volume to be the migration-limited storage capacity. Rearranging
the expression for non-dimensional distance £ (Eq. 2.14), we obtain a formula for the injected

volume V; = QT;:
2

£

By setting = to the total length of an aquifer, Ly, & to the dimensionless extent of the

Vi=aWHeo(1 — Sue)

plume when it is fully trapped, &7, we ensure that this injected volume will just fit in the
aquifer. Since the model is one dimensional, we measure the length of an aquifer, Lz, in
the direction parallel to migration. We calculate the dimensionless extent of the trapped
plume, &7, using the trapping model. To convert volume to mass of COo, we multiply by
the density of COs3 in the aquifer, and obtain the final expression for the storage capacity,
Cy:

Cr = py LW H(1 - ch);. (2.20)

The expression has the same form as equations commonly used in the literature (Eq. 2.1),
but the efficiency factor ¢ = 2/{7 can now be calculated explicitly.

To calculate the efficiency factor, we first solve the equation for the injection plume
(Eq. 2.15) analytically using the method of characteristics [128, 106]. We use the solution
as the initial condition for the equations governing post-injection migration (Eq. 2.16-2.17).
While these equations can be solved semi-analytically in some limiting cases, we in general
solve them numerically using a finite volume method with linear reconstructions and a van

Leer limiter, and forward-Euler time stepping [100].

2.6.3 Pressure model
Mathematical model

We have previously derived a one-dimensional version of our pressure model [147]. Here,
we extend the model to two dimensions. All variables in the model are defined in Table 2.1.

The major assumptions in the model are: (1) the vertical stress is lithostatic; (2) the over-
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burden is the only source of horizontal stress (the bilateral constraint [171, p.282]); (3) the
aquifer, the overburden, and the underburden are homogeneous; (4) the initial pressure is
hydrostatic; (5) the aquifer properties and fluid properties are constant; (6) the pressure
distribution along the line-drive array of wells is uniform; and (7) the compressibility of the
COg is negligible. This final assumption will cause the model to overestimate the pressure

rise at the well array, and will therefore lead to conservative estimates of storage capacity.

The assumptions cause errors in the calculated pressure. Neglecting the compressibility
of COg will cause the model to overestimate the pressure rise at the well array, and will
therefore lead to conservative estimates of storage capacity. Assuming uniform pressure
along the well array can lead to an underestimation of the pressure buildup at the wells
themselves, and could cause us to overestimate the storage capacity. The validity of this
assumption can be estimated by comparing the timescale of pressure communication be-
tween wells in the array with the injection time: if the pressure field equilibrates along the
well array quickly relative to the injection time, the assumption will be good and the error
will be small. With this is mind, we estimate the pressure equilibration time and compare
it to an injection time of 100 years, which is the most important time horizon in our study.
We assume a permeability of k=100 mD, a brine viscosity of u=1 mPa s, and an aquifer
compressibility of c=0.1 GPa~!, based on aquifer data in Table 2.30. We find that for a well
spacing of [=10 km, the timescale of pressure equilibration is roughly 1?/(k/cu)~3 years,
which is much smaller than the 100 year time horizon. Since the well spacing is reasonable
and the equilibration occurs relatively quickly, the assumption of uniform pressure along

the array likely causes minimal error.

The geologic setting of our system is the same as the setting of the trapping model, but
now includes the entire thickness of the basin that contains the target aquifer, as shown in
Figure 2-7. In this system, the model for pressure, p, as a function of spatial coordinates x
and z and time, t, is:

cop + Opuy + Ou, = I(2), (2.21)

where ¢ is the compressibility, I is a function that represents injection into the aquifer, and

u, and u, are the Darcy velocities in the z and z directions, respectively. Since we neglect
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the compressibility of COq, these velocities are given by Darcy’s law for single-phase flow:

k.(z
Uy = — Ozp, Uy = — /L( ) (020 — puwyg), (2.22)

kagq D<z<D+H,
k(2) =

ky = kag/2 otherwise,

kaq D<z<D+H,
k.(2) =

k, = 2kcqp otherwise.

These expressions are conditional because we assign different properties to the aquifer and
the regions outside of the aquifer. Within the aquifer, the intrinsic permeability is kqq.
Above and below the aquifer, we set the permeability to average values (k. and k) derived
from the aquifer permeability and the caprock permeability, kcqp, as shown in Figure 2-8.
The source term [ is conditional since it accounts for a ramping-up of the injection rate, a

ramping-down of the injection rate, and then no injection, as shown in Figure 2-6:

( 2Qmam t
: - <
8(x)U(=: D, D+ H) e - 0<t<T/2
2Qma:ﬂ t
I(z,t) =  6(x)U(z; D, D + H) WH 1_f T/2<t<T,
0 T <t,

where T; is the injection time (Figure from main paper) and U is the rectangular function,

which allows injection only within the aquifer:

1 D<z<D+H
U(z) =

0 otherwise.

With these expressions, the model for pressure becomes:

w

w

cOip — Opap — 0, < (azp - ng)> = I(Z> t) (2'23)
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Figure 2-6: In our model, the injection rate of CO5 increases linearly to a maximum, (4., decreases
linearly to zero, and then remains at zero.

gl Xmaac szn
Y 'x
z\

overburden D

=

©
aquifer . 1H
underburden B

Figure 2-7: Since we consider injection from a line-drive array of wells, our pressure model is two
dimensional: it captures behavior in a plane perpendicular to the line-drive array that extends from
the ground surface to the basement. We position the center of the coordinate system where the
line-drive array intersects the surface.

Xmin < < Ximaz, O<z<D+H+B, t>0,

where X,,;, is the distance to the nearest lateral boundary and X,,,, is the distance to
the farthest lateral boundary. In practice, these boundaries correspond to the edges of the

pressure-model domain (see Section 2.6.4).

The initial condition is hydrostatic pressure. The boundary condition at the top of the
basin is a constant-pressure condition, and the boundary condition at the bottom of the
basin is a no-flow condition. The boundary conditions at the sides of the basin may be
either no-flow conditions or constant-pressure conditions depending on the geology. We

assume that the same boundary condition applies over an entire side of the basin.
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high-perm. unit c =k anisotropic ki ~ kag/2
low-perm. unit b = k. overburden —

w-p uni To ~ ok,
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aquifer aquifer ¥ kaq
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underburden

Figure 2-8: We model the entire thickness of a basin by assuming that it consists of multiple layers
of high-permeability and low-permeability rock. We assume that each layer of high-permeability
rock has the same permeability as the aquifer, and that each layer of low-permeability rock has the
same permeability as the caprock. Under these assumptions, we average the permeabilities of all
the layers above and below the aquifer to get homogeneous, but anisotropic permeabilities of the
overburden and underburden.

Non-dimensional form of the equations. We choose the following non-dimensional

variables:

~ p— (o + Pwg?) _t oz _z

We define the characteristic pressure and the characteristic length in the z-direction as:

- 2 max wdq aqLi
B Q T 7 I kagT; '
HW \ Tage s

The non-dimensional form of the pressure model is:

Orp = Ae(Q)eep — Oc (M(Q)Icp) = 1(C), (2.25)

Emin < & < Emas; 0<(<14+Q+48, 7>0,
where the dimensionless lengths in the basin are given by:

- o Xmin — o 0=
—min — ) —maxr — ) -

L




A¢ and ¢ are dimensionless diffusion coefficients given by:

1 Q<(<Q+1,

Ae(€) =
1/2  otherwise,
and
kagTi
< Q41
pwcH? T c<itl
A(€) =
2kcapTi :
ch;—I? otherwise.
The dimensionless injection function is:
(EOUCGQQ+ )T 0<7<1/2,

I(Gm) = 8OUCGLQ+ 1) (1 —7) 1/2<7 <1,

0 1<
Pressure-limited capacity

For a given injection period T, a particular injection scenario characterized by Qmq, will
lead to a particular maximum pressure in the aquifer. There is a value of Q4 for which
the maximum pressure will reach the fracture pressure of the aquifer. We define the volume
injected in this scenario to be the pressure-limited storage capacity. In our ramp-up, ramp-

down injection scenario, the volume injected is
1
Vp = §QmmT' (2.26)

The maximum injection rate can be obtained by rearranging the expression for the non-

dimensional pressure, p (Eq. 2.24):

kage p — (Po + Pwg2)
Q = HW aq _
mazxr L T 2p

Setting the pressure to the fracture pressure, p = Pfq., and the dimensionless pressure
to the maximum dimensionless pressure, p = Daz, yields the maximum injection rate for

which the pressure will just reach the fracture pressure. Substituting into the expression
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for injection volume and multiplying by the density of COs yields the storage capacity in
mass of COq, Cp:

kanT Pf’rac - (po + ng)
Hw 4Dmaz

Cp = pgHW : (2.27)

We determine the maximum dimensionless pressure pp,q, by solving the pressure model
(Eq. 2.25) numerically. We use a second-order finite-volume method in space with a Crank-

Nicolson time discretization [100].

We define the fracture pressure, Pf,qc, to be the pressure required to create a tensile
fracture in an aquifer [55, 171]. Ignoring the cohesive strength of the aquifer rock, a tensile
fracture occurs when the pore pressure equals the least principal stress. When this stress

is vertical, we calculate it to be the weight of the overburden:

Pfrac = PogD + po, (2.28)

where p, is the average bulk density of the overburden, which we approximate to be 2300
kg/m3 [149]. When it is horizontal, we approximate it using the bilateral constraint [171,
p.282]. This constraint provides a relationship between the effective horizontal stress, o},

and the effective vertical stress, o):

vy
Th =1,
v
O'h—P ZE(O—U—P]}),

where oy, is the principle horizontal stress, o, is the vertical principle stress, v is the Poisson
ratio, and P, is the pore pressure. Assuming that the pore pressure in a basin is hydrostatic,
we solve this equation for the initial horizontal stress in an aquifer at depth D. We use this
as an estimate of the pressure required to create a vertical fracture in rock with negligible
cohesive strength:

14

Pfrac = E (ng - ng) + Po +,07wgD, (229)

We determine whether the least principal stress is horizontal or vertical by using a stress

map for the United States [173].
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2.6.4 Methodology for application of the models

We calculate the storage capacity of eleven deep saline aquifers in the conterminous United
States. We select these aquifers on the basis of their (1) size, (2) depth, and (3) structural
integrity, and (4) on the availability of data . We select the largest aquifers because our
model applies at large lateral length scales and because large aquifers will contribute the
most strongly to the nationwide storage capacity. We select aquifers located at depths
greater than 800 m to ensure that CO2 will be stored efficiently as a high-density super-
critical fluid. We study aquifers with as few major faults as possible to help reduce the
possibility of leakage. While there are likely many deep saline aquifers that meet these
criteria, we further restrict our study to those aquifers that have been well characterized

and for which the data is publicly available.

Aquifer boundaries. For each aquifer, we use the four criteria stated above—sufficient
size, depth, structural integrity, and data—to determine which parts of it are suitable for
sequestration. In general, these criteria may be evaluated at a range of length scales. For
example, faults and pinchouts in the caprock may occur at scales ranging from the sub-
meter scale or less to the regional scale. Since we calculate storage capacity at the basin
scale, we evaluate these criteria at the basin scale and assume that small-scale variations
will have small impacts on the storage capacity. When one of these criteria is not met at
the basin scale, we exclude the appropriate region from our analysis by setting a boundary
(Fig. 2-9).

Some types of boundaries impose boundary conditions in the pressure model (Fig. 2-
9). We set constant pressure boundaries at outcrops. We set no-flow boundaries where
the reservoir pinches out between two confining layers, changes to low-permeability rock
(k < 10 millidarcy (mD), 1 darcy=10"'2 m?), or becomes cut by basin-scale faults. While
faults may be either conductive or sealing, we set them to be no-flow boundaries so that

the calculation of pressure-limited capacity is conservative.

Model domains. Within the boundaries of an aquifer, we determine the area over
which to apply the trapping model. This region defines the maximum allowable extent of
the plume when fully trapped, L7, and the width of the well array, W. We select model

domains in which the aquifer properties exhibit sufficient uniformity for the trapping model
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Criterion for Feature Boundary condition Symbol
suitable aquifers marked in pressure model y
. Limit of
Sufficient data available data no flow
Reservoir no flow
Aquifer pinchouts
continuity Low-
OVY perm. no flow R —
regions
Faults no flow ——
Outcrops constant pressure
Low potential
of leakage Caprock not a pressure
pinchouts boundary
High-perm. not a pressure -
region in caprock boundary
Sufficient depth 800m - depth not a pressure
contour boundary

Figure 2-9: We exclude portions of an aquifer from our analysis if they do not meet the four criteria
in this table. In our geologic maps, we delineate these regions by drawing boundaries. Some of these
boundaries impose boundary conditions in the pressure model.
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to capture basin-scale behavior of the injected COs. In addition, we orient the model
domains according to the dominant transport direction. If the transport directions are not
co-linear, we compare N, and Ny to determine the dominant process (Eq. 2.18). We evaluate
Ny and Ny using values of their parameters averaged over the entire area within the reservoir
boundaries. However, if the depth and isopotential contours are very complicated within
some part of that area such that transport from ground water flow or up-slope migration

can not be approximated as one-dimensional, we exclude that area from our averaging.

Another constraint on the size of a model domain comes from an assumption in the
trapping model: since the model assumes that all behavior perpendicular to the well-array
has a negligible or higher-order effect on migration, it rigorously applies to domains in which
the ratio of the length parallel to the intended well array to the length parallel to transport
is large. While we usually choose domains with an aspect ratio of two or larger, in some
cases we use domains that have an aspect ratio closer to one. In these cases, the trapping
model predicts a migration distance that is longer than the real migration distance of a
given volume of CQOa», since the spread of the real plume parallel to the well array would be

important.

In addition to setting the trapping model domain, we set the area over which to apply
the pressure model. Since we use the same well array in the pressure model as we do in the
trapping model, the widths of these two domains are the same. However, their lengths are
often different because not all of the aquifer boundaries correspond to boundary conditions
in the pressure model (Fig. 2-9). This is because regions are not suitable for storing COg may
be suitable for “storing” some of the pressure perturbation due to injection. The distances
from the well array to the edges of the pressure model domain define the distances to the

lateral boundaries in the pressure model, X,,;n, and X0, (Eq. 2.23).

As with the trapping model domains, the pressure-model domains should have large
aspect ratios for the pressure model to be strictly valid. However, this is difficult to ac-
complish in practice, and many of the pressure model domains in this study have aspect
ratios near one or less. In these cases, pressure diffusion in the direction parallel to the well
array becomes important, resulting in a smaller overpressure at the well array for a given
injection scenario compared to the model predictions. Since the model overestimates the

pressure rise in these cases, it underestimates the pressure-limited capacity (Eq. 2.27).
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Model parameters. Within a model domain, we set the parameters in the models in
three ways (Table 2.1): by using aquifer data directly, by using aquifer data to calculate the
parameters, or by estimation. We list the method we use and the value of each parameter

in the section describing each aquifer (e.g. Table 2.2).

We use aquifer data directly to set parameters such as the aquifer depth, thickness,
porosity, salinity, and permeability. Since the data often exhibit large uncertainty and
variability at the basin scale, we choose representative values. We choose these values to
make the storage capacity calculations conservative. For example, if an aquifer exhibits a
wide range of porosities, we choose a low value in the range, which will result in a lower

trapping-limited storage capacity.

When aquifer data cannot be used directly, we use it to calculate the required parame-
ters. We calculate COq viscosity and density as functions of temperature and pressure [25].
We calculate the temperature in an aquifer, 754, using the surface temperature, T, and the
geothermal gradient, G. We calculate the fluid pressure assuming a hydrostatic gradient.
Brine density, brine viscosity, and the solubility of COs in brine are functions of salinity in
addition to temperature and pressure. While aquifer brines may contain a wide variety of
salts, we treat them as consisting of only water and sodium chloride (NaCl), which is by
far the dominant salt in nearly every deep saline aquifer [85]. We calculate the density and
viscosity of brine using correlations based on temperature, pressure, and concentration of
sodium chloride [16]. We determine the solubility of COz in brine from published experi-

mental data for salinities up four molal [42] and from a correlation for higher salinities [46].

In the trapping model, the relevant measure of COq solubility is the volume of free-phase
CO> that can be dissolved per unit volume of brine saturated with COs. This parameter,

Xv (Eq. 2.9), can be calculated from the solubility in terms of mass fraction, x,:

d
Xv = &Xm~
Pg

To calculate the density of COq-saturated brine, pg, we use the following formula [8, 60]:

L= xm(1 = Vypi, /M)’

Pd

where M, is the molar mass of CO2, py, is the density of pure water at aquifer conditions, and
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Vs is the apparent molar volume of COs in the brine, given by the following correlation [60]:

Vi =37.51 x 107% — (9.585 x 10™%) Ty + (8.740 x 107 ') T2, — (5.044 x 10 %77

aq?’

where Ty, is in degrees Celsius and Vj, is in m®/mol.

When there is insufficient data to determine the required parameters, we estimate them.
Since little or no data was available for the compressibility of the aquifers and caprocks in
this study, we set the average compressibility for every basin to ¢ = 10719 Pa~!, as has been
done in other basin-scale studies [170]. We do not pursue a more rigorous approach because
published compressibility data for many types of aquifers and caprocks are equal to within
the variability and uncertainty of the data, and also similar to the compressibility of water
at the pressure and temperature conditions of deep aquifers. For example, published values
for sandstones and limestones generally range from 1 x 107! to 1 x 10719 Pa~! [160, 26],
while published values for low-porosity shales and mudstones (¢ < 0.2) generally range
from 1 x 107! to 1 x 107Y Pa~! [89, 32, 50, 115]. Similarly, we set the Poisson ratio
of the aquifers or caprocks to 0.3 in every basin, which is a value characteristic of many
sedimentary rocks [160].

When data on caprock permeability is unavailable, we estimate it to be 0.01 mD [124,
153, 37]. While rocks deeper than about 3 km can exhibit much lower permeability [122],
we use this value for all confining units under the assumption that small fractures that are
likely widespread at the basin scale will produce effective permeabilities of this order or
higher.

Since aquifer-specific data on the multiphase-flow characteristics of CO2 and brine was
also unavailable, we estimate the connate water saturation, residual COs saturation, and
the endpoint relative permeability to CO2. Based on published data, we take S, = 0.4,
Sgr = 0.3, and k. = 0.6 [18]. These values correspond to I' = 0.5.

2.6.5 Aquifer data
Mt. Simon Sandstone

The Mt. Simon Sandstone is widespread in the Midwestern United States, as shown in
Figure 2-10. It is a transgressive sandstone that consists dominantly of quartz arenite [162,

169]. Near its base, the formation tends to be conglomeratic with igneous pebbles [164, 76].
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Figure 2-10: The Mt. Simon Sandstone is widespread in the Midwest. It is deepest and thickest in
the centers of the Illinois, Michigan, and Appalachian Basins. (a) Modified from [162, Fig.A2-3],[74,
Map clmtsimong], and [15, Fig.3]. (b) Modified from [162, Fig.A2-2],[99, Fig.2], and [15, Fig.4].

Lenses of sandy to silty shale are interbedded in the lower part of the formation in Illinois,
and in the upper part of the formation throughout the Midwest [169, p.B13].

The Mt. Simon Sandstone is overlain by the Eau Claire Formation, which is composed
of silty dolomites, dolomitic sandstones, and shale [162]. This formation has been identi-
fied as a regional confining unit by a number of authors [102, 169, 108]. The Mt. Simon
unconformably overlies Precambrian igneous and metamorphic rocks, which we take as an
aquiclude [164, 76].

In this study, we model sequestration in deep parts of the formation that lie in the
Michigan Basin, Illinois Basin, and the Indiana-Ohio Platform. Within each region, we
identify a single model domain, as shown in Figure 2-11. The data for each domain are

shown in Tables 2.2, 2.3, and 2.4.
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faults
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Figure 2-11: We divide the Mt. Simon Sandstone into regions a, b, and c using eight boundaries.
Boundary 1 corresponds to where the porosity becomes very low due to diagenesis (¢ < 0.1) [15].
Boundary 3 corresponds to where the Mt. Simon Sandstone pinches out into thinner sandstones [99,
Fig.2], and Boundary 5 corresponds to where it pinches out between the Precambrian basement
and the caprock [99, Fig.2]. Boundary 7 corresponds to the edge of available depth and thickness
maps [74, Map clmtsimonag]. Boundaries 2, 4, 6 and 8 correspond to basin-scale faults[162, 86].
Within each region, we set the extent and orientation of the model domains based on the aquifer’s
topography since upslope migration is the dominant transport mechanism.
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Black Warrior River Aquifer

Following previous studies, we model a number of Cretaceous rocks in the southeastern
Coastal Plain as a single aquifer called the Black Warrior River Aquifer [114, 137, 7, 146].
This aquifer begins in central Alabama and Georgia, where it either outcrops or pinches
out, and from there it deepens and thickens toward the Gulf of Mexico. In Alabama and
northwestern Florida, in consists of rocks in the Eutaw and McShan Formations and the
Tuscaloosa Group. In Georgia and northeastern Florida, it consists of rocks in the Eutaw
Formation, Tuscaloosa Formation, and the Atkinson Formation [114, Fig.72]. These rocks
are mostly sandstone interbedded with siltstone, shale, and mudstone [114, 137, 146]. They
where deposited in a variety of settings, including fluvial, deltaic, and marine environments.

A variety of rocks underlie the aquifer. These rocks include Precambrian crystalline
rocks, Paleozoic and Mesozoic sedimentary rocks, and Lower Mesozoic redbeds and dia-
base [114, Fig.76]. While some of these rocks are porous and permeable, we do not model
them because they are very poorly characterized. The aquifer is overlain by the Selma
Group, which consists mostly of chalk and is recognized by many authors as a regional
aquitard [114, 137, 146).

A variety of geologic features constrain the region of the Black Warrior River Aquifer
that is suitable for sequestration, as shown in Figure 2-12. Within this region, we identify
four model domains, also shown in Figure 2-12. The data for each domain are shown in

Tables 2.5, 2.6, 2.7, and 2.8.
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ALABAMA GEORGIA 2
boundary number
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insufficient data
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Figure 2-12: We identify seven boundaries that constrain the portion of the Black Warrior River
Aquifer that is suitable for sequestration. Boundary 1 corresponds to where the aquifer crops out
in central Alabama and Georgia [114, Fig.79]. Boundary 2 corresponds to where it pinches out
between the overlying Chattahoochee River Aquifer and underlying low-permeability rocks [114].
Boundary 3 marks where the aquifer becomes shallower than 800m [114, Fig.79]. Boundaries 4 and
6 correspond to edge of available depth maps [114, 137, 5]. Boundary 5 shows where the aquifer
pinches out or becomes very thin [5, Plate 3A]. Finally, Boundary 7 corresponds to where the aquifer
becomes offset by a fault system by up to hundreds of meters. Within these boundaries, we identify
four regions in which to apply our models (Regions a, b, ¢, and d).
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TEXAS TEXAS ‘
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| . L\
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a. depth to top of the aquifer b. thickness

Figure 2-13: The Frio Formation is located on the east coast of Texas. It dips and thickens toward
the coast. (a) Modified from [74, Map clfriogl]. (b) Modified from [74, Map c4friog].

Frio Formation

The Frio Formation occurs in the Gulf Basin in Texas. Starting at outcrops about 150km
inland from the coast, it dips and thickens uniformly toward the coast as shown in Figure 2-
13, reaching depths of more than 3000m below sea level [72, p.21].

The Frio Formation is highly heterogeneous, consisting of interfingering marine and
nonmarine sands and shales [59]. These sediments occur in a variety of facies such as
deltaic and fluvial facies [73]. The Frio Formation is overlain by the Anuhac Formation
and underlain by the Vicksburg Group and Jackson Group. These units are composed
dominantly of clay and form an effective aquitard and aquiclude [140].

We model sequestration in a broad region of the Frio Formation along the Texas coast,
as shown in Figure 2-14. Within this region, we identify three regions in which to apply
our models (Regions a, b, and c). The data for each region are shown in Tables 2.9, 2.10,

and 2.11.
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TEXAS 1

1 boundary number
= = = high proportion of shale
outcrop
insufficient data
i insufficient depth
b model domain
trapping-model domain

pressure-model domain
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_
0 50 KILOMETERS

Figure 2-14: We identify four boundaries that constrain the portion of the Frio Formation that
is suitable for sequestration. Boundaries 1 and 3 correspond to the edges of available depth and
thickness maps [74]. Boundary 2 corresponds to where the proportion of shale in the formation
becomes greater than 80% [74, Map 5frio]. Boundary 4 corresponds to outcrops [74]. Within these
boundaries, we identify three regions in which to apply our models (Regions a, b, and c).
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Figure 2-15: The Madison Limestone is located in Williston Basin in North Dakota, South Dakota,
and Montana. The basin is roughly bowl-shaped, with the center and deepest part of the bowl
located in western North Dakota. (a) Modified from [74, Map clmadisong]. (b) Modified from [40,
Fig.11].

Madison Limestone

The Madison Limestone occurs in the Williston Basin [161]. In general, it dips and thickens
towards the center of the basin in western North Dakota, as shown Figure 2-15.

The Madison Limestone consists of a sequence of carbonates and evaporates that are
divided into three formations [40]. From oldest to youngest, these are the Lodgepole Lime-
stone, the Mission Canyon Limestone, and the Charles Formation. The Lodgepole Lime-
stone consists mainly of argillaceous, thin-bedded limestone and dolomite. The Mission
Canyon Limestone consists mainly of limestone that is coarsely crystalline at its base and
finer at its top. The Charles Formation consists of anhydrite and halite with interbedded
dolomite and limestone.

In the Williston Basin, the Madison Limestone is overlain by the Big Snowy Group [40].
This group consists mostly of shale and sandstone, with minor limestone. We model it
together with the Charles Formation as an aquitard. The aquifer is underlain by the Bakken
Formation in the Williston Basin, which consists of more than 30 meters of shale and
siltstone [40]. We model this formation as an aquiclude.

We model sequestration in two regions of the Madison Limestone, as shown in Figure 2-
16. Within each region, we identify one model domain. The data for each domain are shown

in Tables 2.12 and 2.13.

60



1 boundary number
= caprock pinchout
— faults
b model domain
trapping-model domain

7~ pressure-model domain

50 MILES
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Figure 2-16: We identify five boundaries that constrain the portion of the Frio Formation that is
suitable for sequestration. Boundaries 1, 3, and 5 correspond to basin-scale faults and lineaments [40,
Fig.16]. Boundaries 2 and 4 correspond to where the caprock pinches out [40, Fig.12]. Within these
boundaries, we identify two regions in which to apply our models (Regions a and b).
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Figure 2-17: We identify ten boundaries that constrain the portion of the Navajo-Nugget Aquifer that
is suitable for sequestration. Boundaries 1, 6, and 10 correspond to basin-scale faults in Mesozoic
rocks [53, Fig.6]. Boundaries 2, 4, and 8 mark where the Navajo-Nugget Aquifer is absent [54,
Fig.14]. Boundaries 3 and 5 correspond to where the aquifer becomes more than 4000 m deep,
which we consider to be too deep for a cost-effective sequestration project [121, 54]. Boundary 7
corresponds to the farthest extent of the Carmel-Twin Creek Confining Unit [53, Plate 2B]. Lastly,
Boundary 9 corresponds to where the Navajo-Nugget Aquifer crops out [54, Fig.14]

Navajo-Nugget Aquifer

The Navajo-Nugget Aquifer is sufficiently deep for sequestration in the eastern Uinta Basin
in northeastern Utah and the Green River Basin in southwest Wyoming [53, Figure 10]. In
the eastern Uinta Basin, it consists of the Glen Canyon Sandstone. In the Green River Basin,
it consists of the Nugget Sandstone [53, Plate 1]. These rocks were deposited primarily
in an eolian environment, but contain minor fluvial components. They typically consist
of massive, crossbedded sandstone that has well-sorted, very fine to medium grains [53,
p.C17].

The Navajo-Nugget Aquifer is overlain by the Carmel-Twin Creek Confining Unit. This
unit consists mostly of siltstone and shale with some interbedded gypsum. The aquifer is
underlain by the Chinle-Moenkopi Confining Unit. This unit consists mostly of siltstone,
claystone, and limestone [53, Table 1].

We model sequestration from one well array in both the Uinta Basin and the Green
River Basin, as shown in Figure 2-17. The data for these regions are shown in Tables 2.14

and 2.15.
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Figure 2-18: (a) The Morrison Formation deepens toward a northwest-southeast axis in the north-
eastern part of the San Juan Basin. Modified from [33, Fig.6]. (b) It thickens toward a north-south

axis in the western part of the basin. Modified from [33, Fig.5].

Morrison Formation

The Morrison Formation occurs in the northwestern corner of New Mexico in the San Juan
Basin, as shown in Figure 2-18. It consists of five members that have varying extents [84,
p.48]. The bottom three members are the Salt Wash Member, the Recapture Member, and
the Westwater Canyon Member. These members consist mainly of interbedded sandstone
and claystone, and are the target members for sequestration in our study [30, p.135-155].
They are overlain by the Brushy Basin Member and the Jackpile Sandstone Member. The
Brushy Basin member consists predominantly of claystone that contains varying amounts

of silt and sand [30, p.135-156]. We take it to be the caprock in our study.

The Morrison Formation is underlain by the Wanakah Formation in the San Juan Basin.
The uppermost member of this formation is the Todilto Member, which consists of limestone
overlain by gypsum and anhydrite. The Wanakah Formation has been identified in previous

hydrologic studies as a confining unit, and we take it to be the aquiclude in our study [84,

p.54].
We model sequestration in the center of the San Juan Basin, as shown in Figure 2-19.

The data for this region are shown in Table 2.16.
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Figure 2-19: We identify six boundaries that constrain the portion of the Morrison Formation that is
suitable for sequestration. Boundaries 1 and 3 correspond to outcrops, and Boundary 5 corresponds
to where the depth to the top of the formation becomes less than 800 m [33, Fig.6]. Boundaries 2,
4, and 6 exclude major faults or fault systems in the San Juan Basin from the study area [84, Fig.7].
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Figure 2-20: (a) The western limit of the aquifer is the Fall Line, where it pinches out against
crystalline rock [155]. From the Fall Line, it dips and thickens seaward. (a) Modified from [74, Map
clpotomac]. (b) Modified from [74, Map c3potomac].

Lower Potomac Aquifer

While the Lower Potomac Aquifer underlies almost the entire North Atlantic Coastal Plain,
we study sequestration in Maryland and Delaware. Here it consists mostly of sediments
deposited in fluvial or deltaic environments: it contains lenses of sand and gravel with
interstitial clay [154, p.G30]. These lenses constitute between 20 and 60% of the aquifer
thickness, and are interbedded with clayey and silty layers.

The aquifer is bounded above by a confining unit composed mostly of clay and sandy
clay beds. It is bounded below by crystalline bedrock [154, 155].

While the Lower Potomac Aquifer extends under the Chesapeake Bay and the Atlantic
Ocean, we study COg storage only under the Delmarva Peninsula, as shown in Figure 2-21.

The data for this region is shown in Table 2.17.
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Figure 2-21: We identify 3 boundaries that constrain the portion of the Lower Potomac Aquifer that
is suitable for sequestration. Boundary 1 corresponds to the Fall Line, where Coastal Plain sediments
crop out or pinch out against the crystalline basement [154, Plate 1A,1B]. Since it is unclear whether
the Lower Potomac pinches out or crops out in the study area, we choose this boundary to be a
pinchout boundary to make our capacity estimates conservative. Boundary 2 corresponds to where
the top of the aquifer becomes less than 800 m deep [74, Map clpotomac]. Boundary 3 corresponds
to the limits of the aquifer depth and thickness maps [74, Maps clpotomac, c3potomac].
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Figure 2-22: The Fox Hills Sandstone deepens along the axis of the Powder River Basin, which runs
northwest to southeast. It thickens toward the southeast. (a) Modified from [74, Map clfoxhillsg].
(b) Modified from [74, Map c3foxhillsg].

Fox Hills Sandstone

The Fox Hills Sandstone occurs in the Powder River Basin, which is located in northeast-
ern Wyoming. In general, it consists of massive, fine- to medium-grained sandstone with
siltstone and minor shale, which are sometimes interbedded [112, p.T68]. The depth to the
top of these rocks and their thickness are shown in Figure 2-22.

The Fox Hills Sandstone is conformably overlain by and intertongued with the Lance
Formation in Wyoming, which provides an extensive top seal [76, p.82]. It is conformably
underlain by marine shale and siltstone in the Lewis Shale or Pierre Shale, which forms an
aquiclude [41, Plate IIJ.

We model sequestration in the center of the Powder River Basin, as shown in Figure 2-23.

The data for this region is shown in Table 2.18.
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Figure 2-23: We identify 7 boundaries that constrain the portion of the Fox Hills Sandstone that is
suitable for sequestration. Boundary 1 corresponds to where the top of the reservoir becomes less
than 800 m deep [74, Map clfoxhillsg]. Boundaries 2 and 6 correspond to where we interpret the
reservoir to pinch out. While we found no cross sections of the reservoir at these locations, we base
this interpretation on the observation that the caprock and rocks stratigraphically below the reservoir
crop out contiguously there [161, Fig.56]. Boundary 3 corresponds to the limit of the reservoir depth
and thickness maps [74, Maps clfoxhillsg, c3foxhillsg]. Boundaries 4 and 7 correspond to basin-scale
faults [161, Fig.56]. Lastly, Boundary 5 corresponds to where the caprock contains more than 50%
sand [74, Map 81foxhillsg].
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Figure 2-24: The Paluxy Formation deepens and thickens toward the center of the East Texas Basin.
(a) Modified from [74, Map clpaluxyg]. (b) Modified from [74, Map c3paluxyg].

Paluxy Sandstone

While the Paluxy Formation is widespread throughout the Gulf Coastal Plain, we focus on
deep parts of the formation in the East Texas Basin, which lies in northeastern Texas [52].
The depth to the top of the formation and its thickness is shown in Figure 2-24.

In the East Texas Basin, the Paluxy Formation is a quartz arenite, but in some areas
can contain up to fifty percent clay [76, p.163]. It is overlain by the Goodland Limestone,
which can be fairly porous and is likely a poor caprock. This limestone, however, is overlain
by the Kiamichi Shale. We model this shale as the aquitard in our study and ignore the
intervening Goodland Limestone since it is thin compared to the Paluxy Formation. The
Paluxy is underlain by interbedded shale and limestone in the Glen Rose Formation, which

we model as the aquiclude [52].

We model sequestration in the center of the East Texas Basin, as shown in Figure 2-25.

The data for this region is shown in Table 2.19.
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Figure 2-25: We identify three boundaries that constrain the portion of the Paluxy Sandstone that
is suitable for sequestration. Boundary 1 corresponds to the edges of four major fault zones: the
Mexia Fault Zone, the Talco Fault Zone, and the South Arkansas Fault Zone [52, Fig.3]. Boundary
2 corresponds to where the top of the formation becomes less than 800m deep [74, Map clpaluxyg].
Boundary 3 marks where the net sand thickness in the formation becomes less than 1m [74, Map

cdpaluxyg].

77



[eL1] ‘8¢'g'6TC P pojernored  (O¢ ovif 5 (egN) emssoxd amgoelg
[eg] pojemored  §0°0 byf (s equr) £3150081A 50D

[91] poje[nores ¢ oy (s equr) £1500s1A oULI

[6 ‘09] poje[nores ), Py (gUun/35) "ssIp wogyy oBurYd AYSUSP oULLE

[érd poje[mored (09 bd (gu/33) Aysuap 2D

[91] pojemoEd 0001 nd (guu/3y) Aysuop outrgy

k4 paremaTed GO0 X (woryoray dwmioa) AyIquios <0

[AxnredogT dey ‘§.] eyep wjmbe 000001 s (wdd) Aymuireg
8-z "S1q paYernores  zo'o 7y (qui) Ayqiqesurzod USPINGISAO [RIIJIOA

8-z "S1q poyernores 0T Ty (qui) Lpiqesurzod USPINGISAO [eIoyer]

(L€ ‘ecT Vel] pejewnise 1070 w02y (qur) Ayrrqesutiod [eO1310A UESIA]
[£xnredg depy ‘FL) eyep jmbe  0g boy (qu) Ayiqeotntod 10Jmby
pojewinyso  ('g n (14 /o) Ayo0[0A AdIR(]

[84xmredTo dey ] poye[nored I @ (seo130p) odors yoorde))
[AxnredyT deiy ‘P ejep wWjmbe g0 1) £318010J
Cz¢ 814 eyep loymbe (g M (uny) Aeire [om o IPIAN

Gz-T 819 elep Ioymbe (07 soudry (ury]) urewrop [Ppow-oanssald Jo YISuLT

Gz-Z 819 eyep ymbe (), L (ury) urewrop [epouwr-gurdders jo 38uor]

[84xnredgo depy ‘y.] eyep wymbe ¢y H (ur) ssouyory) Iojinbe JoN
[84xnredTo dey ‘§2][9g] eyep 1Jmbe 09 g (ur) yooxpaq 03 Ioymbe woiy yde
[84xmredo dey §.] eyep wjmbe  (00Z a (ur) zoymbe jo dog oy yadeq
€] eyep wjmbe (g ‘L (D,) amyeredure) aoejINg

[6TT ‘16]  ®jep rymbe (g ) (ursy/D,) YUSIPRIS [BULIDYI0O))

[TD o198, ‘091 pejewnyse €0 a OTYRI UOSSIO poure.Iptf)

(1D o19®L ‘091 pojewnise  1°(Q ) (1_edD) Anpqrsseadwo))

[geT ‘28] pojewinse  10°0 ) XN OULIQ-PojRINeS-¢()0) JO JUSIOIGOO))

[0eT ‘81] pojewse  9°() Oy 20D 0% Lypiqesurtad saryerar jurodpuy

[0gT “|T) pojewnse () ong UOTJRINYES I9)eM 9)LUUO))

loeT ‘81] pajewise ¢ Pig uoryeImyes 00 [enplsey
90UQJI9JOY 92INOS eje([ oNfeA  [OqUIAS I9jourereq

"ouo)spueg AXneJ oY) 10y sisjowrered :61'g (el

78



St. Peter Sandstone

While the St. Peter Sandstone is widespread in the Mississippi River Valley, we model
sequestration only in the Illinois Basin where it is sufficiently deep and well characterized.

The structure of the formation in this basin is shown in Figure 2-26.

The stratigraphy of the St. Peter Sandstone is complicated. It consists of three members
whose occurrence and size vary with location: the Kress Member, the Tonti Member, and
the Starved Rock Sandstone Member. The Kress Member is the lowermost unit and is
present only in central and northern Illinois Basin. It is composed of poorly-sorted, cherty
conglomerate, clayey sandstone, and shale. The Tonti Member is the middle member and
is generally the most widespread and thickest unit in the St. Peter. It is a fine-grained, very
pure quartz arenite. The Starved Rock Sandstone is the uppermost member and is mostly
present in the northern and central Illinois Basin. It is a quartz sandstone like the Tonti

Member, but is medium-grained and more cross-bedded [169, 164].

The St. Peter Sandstone is overlain by at least four different formations or groups in
different parts of the Illinois Basin: the Dutchtown Limestone [88, Fig.5-10], the Joachim
Dolomite [88, Fig.5-11], the Platteville Group, and the Glenwood Formation [164, p.63].
While these rocks exhibit a variety of different lithologies, we take them as a group to
be an aquitard because all of the rocks contain low-permeability layers. For example, the
Dutchtown Limestone contains beds of shale; the Joachim Dolomite contains beds of shale,
gypsum, and anhydrite; the Platteville Group contains beds of chert and shale; and the
uppermost layer in the Glenwood Formation is composed of shale. Other authors have also
suggested that at least some of these rocks will act as a caprock [169, 76]. If this assumption

is wrong, the overlying Maquoketa Shale is a well-recognized caprock [169, 108].

The St. Peter Sandstone is underlain by a variety of rocks since its base is a major
regional unconformity [164, Fig.O-13|. In the southernmost part of the Illinois Basin, it is
underlain by the Everton Dolomite. In the northernmost part of the basin, it is underlain by
the Cambrian Potosi Dolomite, Franconia Formation, and Eminance Formation. In most
of the remaining parts of the region, the St. Peter is underlain by Ordovician rocks in
the Prairie du Chien Group: the Shakopee Dolomite, the New Richmond Sandstone, the
Oneota Dolomite, and the Gunter Sandstone [164, p.45-60]. Although we do not identify

these rocks as a regional aquiclude, we do not consider them for sequestration since their
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Figure 2-26: (a) The St. Peter Sandstone dips toward the center of the Illinois Basin in southern
Mlinois. Modified from [74, Map clstpeter]. (b) Its thickness is highly variable due to irregularities
in an unconformity at the base of the formation and post-depositional erosion [164, p.62]. In some
areas, this erosion has completely removed the St. Peter. Modified from [74, Map c3stpeter].

geology is complex and can be very different from the overlying St. Peter Sandstone.

We model sequestration in southern Illinois, as shown in Figure 2-27. The data for this

region are shown in Table 2.20.
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Figure 2-27: We identify two boundaries that constrain the portion of the St. Peter Sandstone in the
Illinois Basin that is suitable for sequestration. Boundary 1 corresponds to the end of the available
depth and formation thickness maps [74, Maps clstpeter, c3stpeter]. Boundary 2 corresponds to
basin-scale faults [86].
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Figure 2-28: The Cedar Keys and Lawson Dolomites deepen and thicken toward the southwestern
part of the Florida peninsula. (a) Modified from [74, Map clcedarkey]. (b) Modified from [74, Map
c3cedarkeyg].

Cedar Keys and Lawson Dolomites

The Lawson Formation and lower Cedar Keys Formation occur in Florida in the South
Florida Basin. The depth to the top of these rocks and their thickness is shown in Figure 2-
28.

The Lawson Formation consists of two members [4, Table 1]. Its lower member is mostly
white chalk that is irregularly interbedded with chalky dolomite or dolomitic chalk. Its up-
per member is finely to coarsely crystalline dolomite that contains gypsum and anhydrite [5,
p.G26-G27]. The Lawson Formation overlies unnamed carbonate beds of Taylor age. Over
the Florida peninsula, these beds consist mostly of chalky dolomite interbedded with few
beds of shale or marlstone [4]. We choose these beds to be the bottom boundary in our
model since we found almost no information about them.

The Lawson Formation is unconformably overlain by the lower Cedar Keys Formation,
which consists of limestone [5]. It is overlain by the middle Cedar Keys Formation, which
consists of massively bedded anhydrite [76, p.72]. These anhydrite beds are nearly imper-
meable and are the caprock in our study [114].

We model sequestration in the center of the Florida peninsula, as shown in Figure S25.

The data for this region is shown in Table 2.21.
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Figure 2-29: We identify 2 boundaries that constrain the portion of the Cedar Keys and Lawson
Dolomites that is suitable for sequestration. Boundary 1 corresponds to the limit of the caprock for
the overlying Floridan Aquifer. While maps show that the middle Cedar Keys Formation, which we
take as the caprock in this study, does not pinchout here, we put a boundary for safety since the
maps are likely very inaccurate [75]. Boundary 2 corresponds to the edges of the reservoir depth
and thickness maps [74, Maps clcedarkey, c3cedarkeyg].
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2.6.6 Sensitivity analysis

Because hydrogeologic data for saline aquifers are highly uncertain, we analyze the sen-
sitivity of both the migration model and the pressure model to variations in their input
parameters. We calculate the relative sensitivity of the capacity of an aquifer C' to a pa-

rameter P as:
g Poc|
Co OP Po

(2.30)
where Py is the baseline value of the parameter and Cj is the baseline capacity. The baseline
for each aquifer is the set of parameter values given in the appropriate preceding section
(e.g., Table S22) and the corresponding capacity (Table S23). For the pressure model, the
baseline values and the sensitivities depend on the injection time. We assess the sensitivity
for each aquifer at three different injection times—7T = 50,100, and 150 years—to define
three baselines. These injection times bracket the key time horizon in our study, 100 years.

For both the migration model and the pressure model, the relative sensitivities vary
between —1 and 2 within individual aquifers, indicating the relative importance of some
parameters over others. For example, the migration model is highly sensitive to the width
of the well array, W, the length of the model domain, L, and the aquifer thickness thickness,
H—key parameters for calculating an aquifer’s pore volume—but is relatively insensitive to
the aquifer permeability, kqq. The pressure model is highly sensitive to the aquifer depth,
D, and the average density of the overburden, p,—two key parameters for calculating
the fracture pressure—but is relatively insensitive to salinity, s. All sensitivities for the
migration model are listed in Table 2.22; all sensitivities for the pressure model are listed

in Table 2.23.

2.6.7 Uncertainty analysis
Uncertainty in input parameters

To quantify uncertainty in the hydrogeologic properties of an aquifer, we estimate a low and
high value for each input parameter using one of three methods. This is a simplification
of hydrogeologic uncertainty, since in reality each parameter would be associated with a
probability density function (PDF) of possible values. We use this simplified approach here
because detailed PDF's are not available.

We estimate the low and high values of each parameter using one of three methods.
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For some parameters, such as surface temperature and geothermal gradient, we estimate an
absolute uncertainty AP and apply it symmetrically about the baseline value, so that the
low and high values of a parameter P with baseline value Py will be Py, = Py — AP /2 and
Phigh = Po + AP/2, respectively (Table 2.25). For other parameters, such as aquifer depth
and thickness, we estimate a relative uncertainty ¢ and apply it symmetrically about the
baseline value, so that the low and high values will be Ploy, = (1 —1/2)Py and Phigh = (1 +
1 /2) Py, respectively (Table 2.26). The remaining parameters—the groundwater velocity,
compressibility, and permeability of the aquifer and caprock—are often assumed to be log-
normally distributed, so we estimate a relative uncertainty ¥ in the log of the parameter.
The corresponding low and high values will then be Py = 3+\p/ % and Phigh = 7337\11/ 2,

We take the relative uncertainty in the log to be ¥ = 0.03 for all of these log-normally

distributed parameters.

Uncertainty in capacity

Uncertainty in the hydrogeologic properties of an aquifer leads to uncertainty in its storage
capacity. We using the low, baseline, and high values of each parameter estimated in the
previous section to calculate the uncertainty in each aquifer’s storage capacity with two
different methods.

In the Extrema Method, we calculate low and high values of the capacity by choosing
the set of parameter values that will give the lowest capacity and the set that will give the
highest capacity. To do so, we choose either the low or high value of each parameter as
driven by the sensitivity analysis: to calculate the high capacity, for example, we take the
high value of all parameters to which the capacity has a positive sensitivity, and the low
value of all parameters to which the capacity has a negative sensitivity.

In the PDF Method, we generate a PDF for the capacity by estimating the capacity
for every possible combination of the low, baseline, and high values of the parameters. The
uncertainty in the capacity is then the standard deviation of this PDF. Since using the
migration and pressure models to calculate the capacity for every parameter combination is
computationally infeasible, we instead extrapolate the capacity for each combination using

the sensitivity analysis:

C=Cy+ §p1AP1 + gpzAPz + §733A'Pg + ..., (2.31)
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Figure 2-30: Approximate probability density functions for the migration-limited capacity of three
well arrays.

where the AP; = P; — Pio, ¢ = 1... N, are the uncertainties in the N input parameters
and §pi are the associated sensitivities. Using Eq. (2.31), we calculate a capacity for every
possible combination of the low, baseline, and high values of each parameter for all N = 16
input parameters, generating 3'¢ ~ 43x 10 values of capacity that compose the approximate
PDF of capacity.

We calculate the uncertainties in the migration-limited capacity and the pressure-limited
capacity independently. For the migration-limited capacity, the low capacities derived from
the Extrema Method, Cj, are about 20-40% of the baseline capacity, and the high capaci-
ties, Cp,, are about 200-350% of the baseline capacity (Table 2.27). From the PDF Method,
the probability density functions are symmetric because the uncertainties in most of the
input parameters are symmetric, and those with asymmetric uncertainties (Darcy velocity
and permeability) exhibit low sensitivities (Figure 2-30). As a result, the mean capacities
from these distributions, C, are nearly the same as the baseline capacities, Cy. One stan-
dard deviation, o¢, is about 30 — 45% of the baseline capacity, and the upper end of the
uncertainty window calculated from one standard deviation—C + o¢—is then about 130 to
145% of the baseline capacity (Table 2.27).

We use one standard deviation as the appropriate measure of uncertainty from the PDF
Method for both migration-limited and pressure-limited capacities. We do not use two
standard deviations because the uncertainty window derived from two standard deviations is
typically large to the point of being meaningless: for most of the well arrays, the lower end of
the uncertainty window is below the low capacity from the Extrema Method, and in at least

one case goes to zero (Figures 2-31 & 2-33). Indeed, the approximate probability density

88



extrema
I baseline capacity 2 std dev
1 std dev

Mt. Simon b
Mt. Simonc -
BWR a -
BWRb -
BWRc A
BWRd -

==
__l__
=
==
==
——
Frioa - —=
Frob { —==———
Frioc { —=———
Madisona { ==
Madisonb { ==
Navajoa { ==
Navajob 1 +—
==
F—
j__
1—
t

Morrison -
Potomac H
Foxhills
Paluxy -
Peter -

0 15 30 45 60 75 90
Migration-limited capacity [Gt CO,]

Figure 2-31: The baseline migration-limited capacity and three measures of uncertainty for nearly

all the well arrays in the study. We do not show Mt. Simon, Region a or Cedar Keys because their
baseline capacities and uncertainties are so large that the data for other aquifers becomes obscured.
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functions from which they are calculated often reach into negative capacities, indicating that
the lower ends of the uncertainty windows derived from them are also too low (Figures 2-30
& 2-32). The upper ends of the uncertainty windows are likely also too low, since the high
capacity from the Extrema Method suggests that the true probability density function is
skewed to the right.

For the pressure-limited capacity, the low capacities derived from the Extrema Method
are generally 30% of the baseline capacity, and the high capacities are generally 300 to
400% of the baseline capacity (Table 2.28). Compared with the migration-limited capac-
ity, the high capacities are typically a larger fraction of the baseline capacity because the
pressure model has more input parameters with large uncertainty, such as the compress-
ibility and caprock permeability, and is more sensitive to the shared parameters with large
uncertainties, such as the aquifer permeability. These parameters with large-uncertainties
also have asymmetric uncertainties, and cause the capacity distributions obtained from the
PDF Method to be asymmetric and often multi-peaked (Figure 2-32). As a result, the
mean capacities from these distributions, C, are different from the baseline capacities, Cj
(Figure 2-33). One standard deviation, o¢, is about 50 — 60% of the baseline capacity,
leading to error windows that are about 100 — 120% of the baseline capacity (Table 2.28).

We extend the uncertainty results from one injection time to all injection times by
prorating. We calculate the high and low capacities from the Extrema Method at all

injection times as:

C(100 yrs)
Co(100 yrs)’

Cr(100 yrs)

Ci(T) = Co(T) Co(100 yrs)’

Cn(T) = Co(T) (2.32)

where Cy(T') and C,(T') are the low and high capacities at any injection time, 7', respectively;
(100 yrs) and Cp (100 yrs) are the low and high capacities for an injection time of 100 years,
respectively; and Cp(100 yrs) is the baseline capacity for an injection time of 100 years. We
choose to prorate based on the results at 100 years because that is the important time
horizon in our study; the results obtained by prorating from an average of the results at 50,
100, and 150 years are extremely similar. We calculate the uncertainty window from the

PDF Method at all injection times as:
C(100 yrs) F o (100 yrs)

C0(T) = Co(T) Co(100 yrs)

(2.33)
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Figure 2-32: Approximate probability density functions for the pressure-limited capacity of three

well arrays.
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Figure 2-33: The baseline and mean pressure-limited capacity with three measures of uncertainty
for all well arrays.
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Figure 2-34: (A) The migration-limited and pressure-limited capacity for Region b of the Mt. Simon
Sandstone, with uncertainty windows based on one standard deviation of the approximate PDF. (B)
The total uncertainty window combines the uncertainties from both types of capacity. The upper
boundary of the window corresponds to the lowermost of the two upper boundaries, and the lower
boundary corresponds to the lowermost of the two lower boundaries.

where C_,(T') and C,,(T) are, respectively, the lower and upper ends of the uncertainty
window based on one standard deviation at all injection times, T; C(100 yrs) is the mean
capacity at an injection time of 100 years; and o¢(100 yrs) is the standard deviation at an
injection time of 100 years.

To construct the complete uncertainty window for a particular aquifer, we combine
the uncertainties from the migration-limited and pressure-limited capacities, as shown in
Figure 2-34. To construct the complete uncertainty window for the entire US storage supply,

we combine the uncertainties from all the aquifers.
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Table 2.25: Parameters for which we estimate an absolute uncertainty, and corresponding absolute

uncertainties AP.

Parameter Symbol AP
Connate water saturation [—| Swe 0.2
Residual CO4 saturation [—] Sqr 0.2
Endpoint relative permeability to CO2 [—] k. 0.2
Coefficient of COg-saturated-brine flux [—] a 0.002
Average density of water in overburden [kg/m?] Puw 20
Average density of overburden [kg/m?3] 7o 230
Surface temperature [°C] T, 1
Geothermal gradient [°C/km] G 2

Table 2.26: Parameters for which we estimate a relative uncertainty, and corresponding relative

uncertainties ¢ = AP/P.

Parameter Symbol ¢
Depth to top of aquifer D 0.2
Depth from aquifer to bedrock B 0.2
Net aquifer thickness H 0.2
Width of well array W 0.1
Length of model domain Ly 0.1
Distance from well array to closest pressure boundary Lppmin 0.1
Distance from well array to farthest pressure boundary  Lp;e: 0.1
Porosity [0 0.4
Caprock slope 0, 0.2
Salinity S 0.1
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Table 2.27: Uncertainty in migration-limited capacity.

Reservoir Region C, C S5 o0 %2 ¢ 959 ¢, SDg&
Mt. Simon a 88 88 0 27 031 29 -0.67 250 1.8
Mt. Simon b 10 10 0 3.3 032 3.1 -0.69 27 1.7
Mt. Simon C 17 17 0.027 4.8 0.28 3.8 -0.77 36 1.1
Black Warrior River a 31 31 0 12 039 8.6 -0.72 89 1.9
Black Warrior River b 30 30 0 7.3  0.25 12 -0.58 59 0.99
Black Warrior River C 14 14 0 3.4 025 5.7 -0.58 27 0.97
Black Warrior River d 26 26 0 11 043 6.9 -0.73 82 2.2
Frio a 18 18 0 8.1 045 4.3 -0.77 67 2.7
Frio b 8.6 8 -0.075 4.3 0.5 2 -0.76 32 2.7
Frio C 12 12 0 54 044 3.1 -0.75 44 2.5
Madison a 53 54 0.015 2.1 0.4 14 -0.73 18 2.3
Madison b 6.6 6.4 -0.016 2.7 041 1.8 -0.72 21 2.2
Navajo-Nugget a 5.1 5.1 0 24 048 14  -0.72 16 2.2
Navajo-Nugget b 4 4 0 14 035 1.2 -0.7 12 2
Morrison 17 17 0 5.3 031 5.7 -0.68 49 1.8
Potomac 3.6 3.6 0.0038 1.5 0.42 0.74 -0.79 12 2.3
Foxhills 55 5.5 0 23 042 1.1 -0.79 16 2
Paluxy 1.5 1.5 0 0.5 032 047 -0.7 4.4 1.9
St. Peter 1.6 1.6 0 0.38 0.24 0.72 -0.55 3.1 0.97
Cedar Keys 87 87 0 22 025 38 -0.57 180 1.1
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Table 2.28: Uncertainty in pressure-limited capacity: Mt. Simon through Navajo-Nugget.

s ral C—Cq oc C1—Co Crh—Co
Reservoir T Cy C Gy oc oo Cy o Ch o

°0 16 21 029 88 054 49 -0.7 53 2.2
Mt. Simon a 100 26 34 0.3 14 055 7.8 -0.7 86 2.3
150 35 46 0.3 20 0.56 10 -0.7 120 2.3
50 82 11 031 4.7 057 24 -0.7 27 2.3
Mt. Simon b 100 13 17 032 7.6 0.59 3.8 -0.7 43 2.3
150 17 22 033 10 0.61 5 -0.71 56 2.3
50 49 64 031 28 057 1.5 -0.7 16 2.3
Mt. Simon ¢ 100 84 11 032 49 0.59 25 -0.71 28 2.3
150 12 15 0.33 7 061 34 -071 39 24
50 56 6.8 021 24 043 1.7 -0.69 17 2
BWR a 100 82 11 028 45 054 26 -0.69 25 2
150 10 14 033 66 063 32 -069 32 2.1
50 3.7 4.8 0.28 2 053 098 -0.74 14 2.7
BWR b 100 6.2 8 029 33 053 16 -0.74 23 2.8
150 85 11 0.3 4.8 057 22 -0.75 33 2.9
50 3.8 5 0.3 2.2 0.56 1 -0.74 14 2.8
BWR c 100 6.6 87 0.32 4 061 17 -0.74 25 2.8
150 9.1 12 0.34 6 066 23 -0.75 35 2.9
50 43 55 027 24 055 12 -0.72 15 24
BWR d 100 61 79 028 34 056 1.7 -073 22 2.6
150 77 10 029 44 056 21 -073 28 2.6
50 9.2 12 027 52 056 23 -0.75 35 2.8
Frio a 100 15 20 028 92 06 3.7 -0.76 61 3
150 21 28 0.28 13 0.62 5 -0.77 87 3
50 59 75 028 33 057 15 -0.75 23 2.8
Frio b 100 99 13 0.29 6 06 24 -0.76 40 3
150 14 18 0.3 8.6 062 33 -0.76 56 3.1
50 55 69 025 29 052 14 -074 21 2.8
Frio c 100 88 12 031 52 059 23 -0.75 34 2.9
150 12 16 032 73 0.61 3 -0.75 47 2.9
50 21 28 0.31 12 0.57 6 -0.72 74 2.5
Madison a 100 36 47 032 21 058 99 -0.72 120 24
150 48 63 032 28 0.59 13 -0.72 160 2.4
°0 13 14 0.065 6.5 048 39 -0.71 44 2.3
Madison b 100 21 22 0.077 99 048 6.1 -0.71 67 2.2
150 27 29 0.08 12 046 79 -0.71 86 2.2
50 256 34 034 16 063 7.1 -0.72 90 2.5
Nav.-Nug. a 100 43 58 034 28 0.64 12 -0.72 150 2.6
150 59 80 035 38 0.64 16 -0.73 210 2.6
50 18 23 027 9.1 049 52 -0.72 64 24
Nav.-Nug. b 100 31 39 027 15 049 88 -0.72 100 2.4
150 41 53 027 21 0.5 12 -0.71 140 2.4
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Table 2.29: Uncertainty in pressure-limited capacity: Morrison through Cedar Keys.

Reservoir T Cy C 56000 oc ‘é—i C C‘C;OCO Ch C’IC;OCO
50 12 16 033 73 0.6 3.4 -0.72 42 2.5
Morrison 100 20 27 0.33 12 0.6 5.7 -0.72 70 2.5

150 27 36 033 16 061 76 -072 94 2.5
50 95 12 029 52 055 29 -0.7 29 2.1
Potomac 100 13 18 033 8.8 0.65 4 -0.71 44 2.2
150 17 24 037 13 075 49 -071 58 2.3
50 58 7.8 034 38 065 16 -0.72 21 2.6
Fox Hills 100 9.7 13 035 6.6 068 27 -073 36 2.7
150 13 18 036 94 071 36 -073 50 2.8
50 29 38 033 1.8 062 07 -0.76 11 2.9
Paluxy 0 5 67 033 32 062 12 -075 20 2.9
50 7 93 033 44 063 17 -0.75 27 2.9
50 25 34 035 16 064 07 -072 8.6 2.5
St. Peter 100 45 6.2 0.35 3 065 13 -0.72 16 2.5
150 6.5 88 036 42 065 18 -0.72 22 2.5
50 34 45 033 21 061 084 -075 14 3
Cedar Keys 100 58 7.7 034 36 062 14 -076 23 3
150 79 11  0.34 5 063 19 -076 32 3.1
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2.6.8 Synopsis of aquifer data and storage capacities

Tables 2.30 and 2.31 provide a synopsis of aquifer properties and storage capacities.
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Chapter 3

The evolution of miscible
gravity currents in horizontal

porous layers

3.1 Summary

Gravity currents of miscible fluids in porous media are important to understand because
they occur in important engineering projects, such as enhanced oil recovery and geologic
COg4 sequestration. These flows are often modeled based on two simplifying assumptions:
vertical velocities are negligible compared to horizontal velocities, and diffusion is negligible
compared to advection. In many cases, however, these assumptions limit the validity of
the models to a finite, intermediate time interval during the flow, making prediction of
the flow at early and late times difficult. Here, we consider the effects of vertical flow and
diffusion to develop a set of models for the entire evolution of a miscible gravity current.
To gain physical insight, we study a simple system: lock exchange of equal-viscosity fluids
in a horizontal, vertically-confined layer of permeable rock. We show that the flow exhibits
five regimes: 1. an early-diffusion regime, in which the fluids diffuse across the initially
sharp fluid-fluid interface; 2. an S-slumping regime, in which the fluid-fluid interface tilts
in an S-shape; 3. a straight-line slumping regime, in which the fluid-fluid interface tilts as
a straight line; 4. a Taylor-slumping regime, in which Taylor dispersion at the aquifer scale

enhances mixing between the fluids and causes the flow to continuously decelerate; and 5.
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a late-diffusion regime, in which the flow becomes so slow that mass transfer again occurs

dominantly though diffusion.

3.2 Introduction

Gravity currents involving miscible fluids in porous layers occur in important engineering
systems. For example, during the drilling of an oil well, miscible drilling fluids penetrate
into the reservoir as a gravity current [43]. Later in the life of some reservoirs, oil production
is enhanced by injecting a miscible fluid such as CO2 or a mixture of refined hydrocarbons,
which migrates though the reservoir as a gravity current [93]. Along the coastline, sea-
water can infiltrate freshwater aquifers as a gravity current [65]. In deep saline aquifers,
miscible gravity currents can occur during COs sequestration when the COgz dissolves into
the groundwater. Since groundwater with dissolved CO» is more dense than the ambient
groundwater, it will migrate away from the free-phase CO5 as a gravity current.

Many models of gravity currents in porous media have been derived under several sim-
plifying assumptions. One common assumption is that vertical flow velocities are negligible
compared to horizontal velocities [17, 168]. This assumption is often called the Dupuit
approximation or vertical-flow equilibrium. While diffusion and dispersion in porous-media
flows have been extensively studied, gravity-current models commonly assume that these
effects are negligible compared to advection [17]. This assumption is often called the sharp-
interface approximation since neglecting diffusion and dispersion causes the fluids to always
be separated by a sharp boundary. Under these assumptions, several models of gravity
currents have been developed for 2D rectilinear systems [17, 34, 77, 66, 35, 107], 2D ax-
isymmetric systems [12, 43, 104, 128], and 3D systems [159, 35].

Recent work on seawater intrusion into coastal freshwater aquifers has included the
effects of both vertical flow and diffusion or dispersion. Tartakovsky et al. [151] incorporate
linear dispersion through a perturbation analysis, Dentz et al. [36] incorporate diffusion
through a perturbation analysis, and Paster and Dagan [134] incorporate velocity-dependent
transverse dispersion though a boundary-layer analysis. In these studies, the geologic setting
makes the flow field steady state: the pressure-driven flow of freshwater toward the sea
resists the gravity-driven flow of seawater into the aquifer, ultimately freezing the position of

the seawater current. As a result, the incorporation of vertical flow and diffusion/dispersion
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a. Initial condition (¢ = 0) b. Exchange flow (¢t > 0)

Figure 3-1: We study the lock exchange of two miscible, equal-viscosity fluids in a horizontal porous
layer. a. The lock gate is initially located at = 0. The fluid on the left of the gate is more dense
than the fluid on the right. b. After the lock gate is removed, the fluids undergo an exchange flow.

does not affect the dynamics of the gravity-current propagation.

Here, we consider the effects of vertical flow and diffusion on gravity currents that do
not exhibit a steady state. We study a simple system to gain physical insight: the lock
exchange of equal-viscosity fluids in a horizontal, vertically-confined layer of permeable
rock (Figure 4-1). The layer is infinite in the horizontal direction; the top and bottom of
the layer are impermeable boundaries. Initially, the more dense fluid occupies the left half
of the layer, and is separated by the lock gate from the less dense fluid on the right. When
the gate is removed, the fluids undergo an exchange flow, with the more dense fluid flowing
to the right along the bottom of the layer and the less dense fluid flowing to the left along
the top.

Currently, the model for this system, which we call the straight-line slumping model, is
based on both the Dupuit and sharp-interface approximations [17, 77, 34]. While this model
provides physical insight and can accurately describe the flow when the approximations hold,
it is valid for only a finite, intermediate time interval during the flow. It is not valid at early
times after the lock gate is removed because vertical velocities are important in the early
slumping. At late times, it is also not valid because diffusion and dispersion will eventually
smear the sharp interface between the fluids into a large transition zone.

We find that the lock exchange of miscible fluids exhibits four self-similar regimes in
addition to straight-line slumping (Figure 4-2). For each regime, we simplify the governing
equations to develop an analytical model of the flow. We find that neglecting vertical flow
and diffusion is only valid at intermediate times during the straight-line slumping regime.
For all other times, at least one of these effects must be included to capture the physics.

We validate the models of two of the regimes, S-slumping and straight-line slumping,
with experiments. The experiments are performed in acrylic Hele-Shaw cells with a 3 mm

gap that is packed with glass beads. The fluids are water and dyed salt water. To prepare
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_ early diffusion

V2 S - slumping

straight —line slumping

D Taylor slumping

V2 H4
D3 late diffusion

time

Figure 3-2: The flow evolves through the five self-similar regimes shown here by simulation results.
The gray scale represents the concentration of the more dense fluid, ¢, normalized to the saturated
concentration, ¢s. The scalings of the transition times between the regimes are shown in terms of
the layer thickness, H, the diffusion coefficient, D, and the characteristic velocity, V' = Apgk/p.
When HV/D < 1, the first and final transition times become equal, the duration of the intermediate
regimes becomes zero, and lateral diffusion becomes the dominant mass transfer mechanism for all
times.
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an experiment, we first turn the cell upright so that the long dimension is vertical, fill it
halfway with salt water, and then the rest of the way with fresh water so that the fresh
water—salt water interface is horizontal. To begin the experiment, we turn the cell 90 degrees
and image the fluid interface with a DSLR camera.

We validate all of the models with numerical simulations of the full governing equations.
When comparing the models with simulation results, we consider the vertically averaged
concentration of the aquifer, ¢. When the interface between the two fluids is sharp, this is
directly proportional to the height of the more dense fluid: ¢ ~ H — h (Figure 4-1). We also
consider the mass flux across the original location of the lock gate, which is a convenient
parameter to characterize the system throughout its entire evolution, regardless of whether

the fluid-fluid interface remains sharp or a large transition zone develops due to mixing.

3.3 Governing equations

The density-driven flow of two miscible fluids in a horizontal porous medium is described
by a coupled system of equations. When the density difference between the fluids is small

relative to the density of the fluids, the Boussineq approximation is valid and the equations

are [96]:
V.-u=0, (3.1)
k
u=—— (Vp— %), 3.2
w( p = p(c)g2) (3.2)
‘gj+u-vc—pv2c:o. (3.3)

Equation 4.1 expresses conservation of mass for the entire fluid mixture, Equation 4.2 is
Darcy’s law, and Equation 4.3 is the concentration equation. The concentration, ¢, may
be interpreted in two ways: if the two fluids are both solvents and the more dense fluid
contains the dissolved component, such as the case for a water/salt water system, then c is
the concentration of the dissolved component; if the two fluids are pure fluids such as water
and ethanol, ¢ is the concentration of the denser fluid. For convenience, we assume the
former case in the remainder of the text. The density, p, is assumed to be a linear function
of the concentration: p = pg + Apé, where Ap is the maximum density difference between
the fluids and ¢ is the saturated concentration (¢s = 1 for a system of two pure fluids). The

remaining variables are as follows: u = (u,v) is the pore velocity, k is the permeability, p is
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the dynamic viscosity, ¢ is the porosity, p is the pressure, g is the gravitational acceleration,
and D is the diffusion coefficient. For simplicity, we assume that hydrodynamic dispersion
is negligible; we address the implications on this assumption in the conclusions. The initial
conditions are that the velocity is zero everywhere, and that the more dense fluid is confined

to the left half of the domain:

cs x <0,
u(x,z,t=0)=0, c(x,z,t =0) = (3.4)
0 x>0.
The boundary conditions and conditions at infinity are:
v(z=0H)=u(zr — ioo):@ :@ = 0. (3.5)
0z 2=0,H Ox T—7F00

When the governing equations (eqs. 4.1-4.3) are made dimensionless, there is only one gov-
erning parameter: the Rayleigh number, Ra = ApgkH/u¢D, which compares the strength
of advection to diffusion (see Supplementary Material, §3.6).

We solve the governing equations using two methods. In the first method, we sim-
plify the equations using scaling analyses or perturbation theory and solve the resulting
equations analytically. In the second method, we solve the full, 2D system of equations
numerically. We integrate in space using finite volumes with linear reconstructions and the
MC limiter [101]. We integrate in time using Runge-Kutta methods [94]. For short-time
simulations, we use an explicit, two-stage method; for longer simulations, we switch to an
implicit-explicit two-stage method to remove the time-step restriction from the diffusion
term [6]. The numerical scheme is second-order accurate in both space and time. We have

confirmed that the numerical results are converged, grid-independent results.

3.4 Flow regimes

3.4.1 Early diffusion (ed)

Immediately after the lock gate is removed, lateral diffusion across the vertical fluid-fluid
interface dominates the mass flux. Diffusion dominates initially because, by Fick’s law, the
diffusive flux is proportional to the concentration gradient, and therefore goes to infinity in

the limit of an initially sharp interface. Since the dynamics involve only diffusion and the

110



a b
1 1
T e = = analytical 10
NG — ical .
g \: numerica. N 1‘." )
% 2 Qw QOQ\‘N““'
o, B <00 F Oy 1
= < X Q. .,
g 8 é Q“?}/ ‘.
Z = O]‘oto A
3 S tf(’ M
= ~
0 ' : : 1071 ' : oy
-4 -2 0 2 4 1072 10! 10° 10*
e = x/VDt time t/(D/V?)

Figure 3-3: a. The analytical solution for the vertically averaged concentration (Eq. 3.1) during the
first regime, early diffusion, agrees well with the numerical profile (numerical data from Ra = 500).
b. The analytical flux, F, across the original position of the lock gate (dashed, Eq. 3.2) also agrees
well with numerical results (circles; Ra = 100, 200, 500, 700, 1200), but specifically in the limit that
time, t, approaches zero because the regime is an asymptotic. The simultaneous departure of all
numerical data from the analytical solution shows that the transition time to the next regime scales
as tgs ~ D/V?2.

geometry is simple, this regime may be modeled by a similarity solution to a 1D diffusion

equation [31]:
c 1

4o (e5)

where the similarity variable is {q = x/v/ Dt. This equation agrees with numerical results

for the vertically averaged concentration (Figure 3-3a). The mass flux across the initial

Fgg=—=1|— .
ed 9 <7Tt> ) (3 7)

which also agrees well with numerical results (Figure 3-3b). Both of these expressions

position of the gate is:

are valid in the limit Ra — 0 or, for finite Rayleigh numbers, in the limit ¢ — 0, as
shown graphically in Figure 3-3b and analytically in the Supplementary Material (§3.6.1).
Equating the flux with the flux in the next regime, S-slumping, shows that the transition

time to the next regime is tys = 2.3D/V?2, where V = Apgk/ué.

3.4.2 S-slumping (ss)

In the second regime, the fluid-fluid interface tilts in an S-shaped curve. While the interface
is diffuse for all finite Ra, we model the flow in the limit Ra — oo for which the interface
is sharp. In this limit, the problem is simplified because diffusion is negligible and the flow

self similar in the variable & = x/V't, as shown by numerical results in Figure 3-4a.
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While there is no exact, analytical model for the flow in this regime, the expression for
the similarity variable provides physical insight into the flow. Rearranging the expression
for &g to solve for xz and differentiating with respect to time yields an expression for the
lateral velocity of the interface: u = &V, where & may now be interpreted as a function
of the scaled interface height, h/H. For example, at the leading edge of the current where
h/H =1, Figure 3-4a shows that & & 1.5, so the velocity of the leading edge is u ~ 1.5V
This expression indicates that the interface advances at a constant rate in time. It also
indicates that the aquifer height, H, does not affect the dynamics: in other words, the
velocity field in two aquifers of different heights is exactly the same when the vertical
dimension is scaled by H.

To develop an approximate model of the flow, we integrate the velocity along the inter-
face at t = 0, found analytically by De Josselin De Jong [34]. The solution for the height
of the interface of the less dense fluid, h, is (see fig. 4-1):

% = %arccot (e_”/w) . (3.8)
This solution agrees well with both numerical and experimental results (Figure 3-4b,c).
From this equation, we find the mass flux as the time rate of change of the dissolved species

mass on the right side of the lock gate:
Fss = 1d <cs /OO(H - h)dx) = 0.186¢V. (3.9)

H dt 0

We use the similarity variable to simplify the integral and then evaluate it numerically. Since
equations 3.8 and 4.23 were derived in the limit Ra — oo, they are asymptotics, accurately
describing the flow at large Rayleigh numbers but becoming increasingly inaccurate for
small Ra (Figure 4d). In the limit Ra — oo, they are rigorously valid for an infinitesimally
small time after ¢ = 0 since they are derived using only the velocity field at ¢ = 0, but they
provide reasonable descriptions of the flow for longer times (Figures 4c,d). For finite Ra,

they become valid at the onset of the S-slumping regime at time tg = 2.3D/V 2.

3.4.3 Straight-line slumping (sls)

In the third regime, the fluid-fluid interface tilts as a straight line. As in the previous

regime, the interface is diffuse, but we model the flow in the sharp-interface limit. Since the

112



Y

o

curves

depth z/H

— collapse
1 1
—0.3 0 0.3 -2 0 2
lateral distance x/H s =)V
4 d 100
H,O
=
cE) § analytical
S D T $354 asymptotic
o el
[ ]
Ra e,
107} , 8

1073 1072 107! 10°
time t/(H/V)

14 cm

Figure 3-4: a. The second regime, S-slumping, is self-similar in {s; = 2/V¢: when numerical solutions
for the fluid-fluid interface at several times are plotted versus g, they all collapse onto a single curve.
b. The approximate analytical solution for the height of the sharp interface (red dashed; Eq. 3.3)
agrees well with numerical results for the problem with no diffusion (black; Ra = o0). c¢. The
approximate solution (red) also agrees well with experiments of salt water slumping in a Hele-Shaw
cell packed with glass beads (Ap = 50 kg/mg; bead diameter 0.5mm; ¢ = 3 min). d. The analytical
solution is an asymptotic in the limit Ra — oco: as Ra becomes larger, the mass flux calculated
from numerics (circles; Ra = 300, 1000, 2150, 4650, 10000) converges to the value from the analytical
solution (dashed). The transition time to the next regime scales as tgs ~ H/V, as shown by the
simultaneous departure of all numerical data from the dashed line.
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lateral extent of the flow in this regime is typically large compared to the aquifer thickness,
we assume that vertical velocities are negligible compared to horizontal velocities (Dupuit
approximation is valid). Under these approximations, Huppert and Woods [77] showed that
the flow is self-similar in the variable g5 = 2/v/V Ht, and derived the following analytical

solution for the interface height, h:

h 1 T
—=—(1+ . 3.10
H 2 < VHt> (3:.10)

This solution agrees well with both numerical and experimental results (Figure 3-5a,b).

Perturbation analysis shows that this solution is accurate to first order in ¢ = H/L, where

L is the horizontal extent of the interface [168].

As in the previous regime, the expression for the similarity variable, &g = x/ VVHt,
provides physical insight into the flow. Interpreting V H as analogous to a diffusion coeffi-
cient, we find that & exhibits the same form as the similarity variable for Fickian diffusion
alone, &q = z/ v/Dt. This comparison indicates that the fluid interface in this regime
spreads diffusively. Specifically, the lateral velocity of the interface, u, decreases in time as

u ~ t~1/2_just as the velocity of a concentration contour decreases as t~1/2

as it propagates
away from the initially vertical interface in the early diffusion regime. The exact expression
for the flow velocity can be determined from Equation 3.10: w = (h/H — 1/2)(V H/t)'/2.
This diffusive spreading is different from the S-slumping regime, in which the lateral veloc-
ities are constant in time. It is also different because the aquifer thickness, H, now affects

the dynamics through the effective diffusion coefficient Dgs = V H. Since the spreading is

diffusive, the mass flux across the initial lock position is also diffusive:

1d n e (VH\Y?
F = —2 (e H— -5 (=) 11
sls H dt (C /0 ( h)dIE) R < t > (3 )

where z,, = V'V Ht is the location of the rightmost edge of the dense current.

Since the equations for the flux (Eq. 3.11), velocity, and interface height (Eq. 3.10) are
based on the sharp-interface approximation, they represent asymptotics of the full problem
with diffusion, providing an increasingly accurate description of the flow as Ra — oo (Fig-
ure 3-5). They become invalid at time t1s ~ H2/D, when the regime ends because vertical

diffusion creates a broad transition zone between the two fluids.
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Figure 3-5: a. The analytical model in the third regime, straight-line slumping, for the height of
the sharp interface (red dashed; Eq. 3.10) matches the numerical solution for the problem with no
diffusion (black; Ra = oo; t/(H/V) = 2,6,12,20,40,65,99). Since the model is an intermediate
asymptotic [13], the disagreement is largest at early times and decreases as ¢ — oo. b. The
analytical model (red) also agrees well with experiments of salt water slumping in a Hele-Shaw cell
packed with glass beads (Ap = 100 kg/mg; bead diameter 0.5 mm; ¢ = 10 min.). c. Since the model
is based on the sharp-interface approximation, the mass flux, F, calculated from numerics (circles;
Ra = 300, 700, 1000, 2150, 4650, 10000) approaches the flux from the model (dashed; Eq. 3.5) as
Ra — oo. The departure of all numerical data from the dashed line shows that the transition time
to the next regime scales as tpg ~ HQ/D.

3.4.4 Taylor slumping (Ts)

In the fourth regime, the dynamics are controlled by the coupling between diffusion and
gravity-driven advection. Advection impacts diffusion because it increases the interfacial
area between the two fluids, which accelerates the diffusive mixing. This process is Taylor
dispersion at the aquifer scale, for which the regime is named [152]. Diffusive mixing
impacts advection because it reduces the lateral density gradient that drives advection.
The relationship between the gradient of vertically averaged density, p, and the lateral
velocity, u, is:

u(z) = gkH 9p <1 z

-~ 2
T > +0(%), (3.12)

2 H
where ¢ = H/L and L is the horizontal extent of the flow (Eq. 3.25). This equation
shows that at long times when ¢ < 1, mixing retards the gravity-driven slumping in direct

proportion to the degree to which it reduces dp/0x.

To model Taylor slumping, we derive an equation for the vertically averaged concentra-

tion, ¢ (see Supplementary Material, §3.6.2):

de 9% 0 ( H'W? [9e]” e
- D - | = =0. 1
ot or?  Ox <120Dc§ [ax} ) 0 (3:.13)

115



The middle term in this equation captures Fickian diffusion in the lateral direction. The
rightmost term captures Taylor slumping. This type of term involving the concentration
gradient cubed occurs in a variety of models describing the coupling between buoyancy and
shear dispersion, including models of pipe flow [49] and open-channel flow [145].

To emphasize the physical meaning of the Taylor slumping term, we compare it to the
classical Taylor dispersion term for Poiseuille flow between parallel plates. In this system,

the equation for the vertically averaged concentration is:

= 0. (3.14)

T 210D 9z

de o 8726 9 b*u? O¢
ot Oz 0z?2 Oz

where 7 is the average velocity and b is the distance between the plates [125]. The rightmost
term in this equation captures classical Taylor dispersion. It is a linear diffusion term with an
effective diffusion coefficient Dtgq = b*u?/210D. The Taylor slumping term in Equation 3.13
can also be interpreted as a diffusion term, but it is nonlinear with an effective diffusion
coefficient Ds = (H*V2/120Dc?)(0¢/0x)?. The nonlinearity arises due to the coupling
between diffusive mixing and the gravity-driven flow: diffusive mixing reduces the flow
velocity (Eq. 4.31), which in turn reduces the diffusive mixing by lowering the rate at which
the interfacial area between the two fluids grows. This coupling does not occur in classical
Taylor dispersion because the velocity is constant during Poiseuille flow.

In Equation 3.13, the Taylor slumping term dominates the Fickian diffusion term at
early times when the aspect ratio of the flow is small relative to the Rayleigh number:
L/H < Ra/+/120. This result comes from scaling = by the lateral extent of the flow,
L, and taking the ratio of the coefficients of the Taylor slumping term and Fickian diffu-
sion term. When the Taylor slumping term dominates, the Fickian diffusion term may be
neglected and the equation admits an exact, analytical similarity solution in the variable

érs = 2/ (H*V?t/120D) /4

c 1 1

c = 5 - 2\/@ gTS (O(2 - §%8)1/2 + a2 aI‘CSiIl <T>:| 9 (315)

where a = (48/m2)"/%. This solution agrees well with numerical results (Figure 3-6a).
In Taylor slumping, the lateral velocities decrease sub-diffusively in time, scaling as

3/4

u ~ t- Based on the similarity variable, the expression for the lateral velocity is

u = Epg(H*V?2/480Dt%)1/4 where &g can now be interpreted as a function of the average
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Figure 3-6: a. The analytical model for the vertically averaged concentration during the Tay-
lor slumping regime (Eq. 4.25) agrees well with the numerical profile (Ra = 1000; t/(H/V) =
670, 1700, 4500). b. The mass flux obtained from this model (dashed, Eq. 4.29) also agrees well with
numerical results (circles; Ra = 300, 700, 1000, 2150, 4650, 10000). Here we only show data after the
onset of Taylor slumping for clarity. The transition time to the next regime is tiq ~ H*V?/D3, as
shown by the simultaneous departure of all data from the dashed line.

concentration. For example, at the leading edge of the current where the average concen-
tration is zero, éps = o and u = a(H*V?/480Dt3)1/%. The velocity decreases faster than in
the previous regime, in which velocity decreases diffusively in time, due to the reduction in

velocity caused by diffusive mixing (Eq. 4.31).

Since the velocities are sub-diffusive, the mass flux during Taylor slumping is also sub-

1d o0 cs miy\
Pro=—2 (0| cdz)= : 3.16
! Hdt( /0 ‘ m) (32407r6)1/4( Dt? ) (3.16)

This expression agrees well with numerical results (Figure 3-6b), helping validate the Taylor

diffusive:

slumping model.

3.4.5 Late diffusion (1d)

At times much later than tjg = 2H*V2/4057* D3, the Taylor slumping term in Equation 3.13
becomes negligible compared to the Fickian diffusion term. This can can been seen by
comparing the fluxes due to Taylor slumping (Eq. 4.29) and Fickian diffusion (Eq. 3.7). At
these late times, the vertically averaged density gradient, which drives the flow, becomes
very small and causes the horizontal flow to become very slow (Eq. 4.31). When the
horizontal flow becomes slow, the vertical mass transfer due to diffusion dominates the

lateral mass transfer due to the flow, and the concentration becomes nearly uniform in the
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vertical direction. The relationship between the vertical concentration gradient and the

horizontal velocity can be found explicitly from a perturbation analysis (Eq. B7): % =

%% fozu dz + O(e?). As a result of the slow flow and nearly complete vertical mixing,
mass transfer occurs dominantly via Fickian diffusion in the lateral direction. This regime
is the same as the first regime, early diffusion, and may be modeled by the same equation
(Eq. 3.6).

For some conditions, the late diffusion regime occurs immediately after the early diffusion
regime, and there is no distinction between them. Subtracting the end time of the early
diffusion regime from the onset time of the late diffusion regime yields an expression for the

duration of the intermediate regimes: t|q — tss = 2D/4057T4V2 (Ra4 — 2.3). When Ra <1,

the duration is zero and the two diffusion regimes occur consecutively.

3.5 Conclusion

The gravity-driven flow of two miscible fluids in a horizontal porous layer evolves through
five regimes. When the fluids are initially separated by a sharp interface, the first regime
is diffusion. In the next two regimes, the gravity-driven flow dominates. At the beginning
of the flow, when the lateral extent of the current is less than the aquifer thickness, the
fluid-fluid interface tilts in an S-shaped curve. In this regime, the leading edge of the
interface propagates at a constant velocity. When the extent of the current exceeds the
aquifer thickness, the fluid interface changes from an S-shaped curve to a straight line. In
this regime, the leading edge continually decelerates, exhibiting a diffusive scaling in time.
In the following regime, Taylor slumping, the flow becomes coupled to diffusive mixing.
The flow affects diffusive mixing via Taylor dispersion at the aquifer scale, in which the
non-uniform flow velocities elongate the fluid-fluid interface over which diffusion acts to
mix the fluids. Diffusive mixing affects the flow by reducing the lateral density gradient
that drives the flow. This coupling causes the flow to decelerate sub-diffusively. Eventually,
the velocity becomes so low that diffusion causes the fluids to be nearly completely mixed
in the vertical direction. In this regime, lateral diffusion through the aquifer again becomes
the dominant mass transfer process. All of these regimes can be described by analytical
models, which when combined in series, provide a complete picture of the entire evolution

of the flow, as shown in Figure 3-7.
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The evolution of the flux is indicative, for example, of the rate of dissolution that can be
expected from CO» injected and stored in geological traps. In geological COs sequestration,
relevant values of Ra exhibit a large range due to the large ranges of aquifer thickness and
permeability [47, 138]. Assuming Ap = 5kg/m?, k = 10-1000mD, y = ImPas, ¢ = 0.2,
H = 25-500m, D = 1 x 107%m?/s, Ra ranges from about 500 to over 1 million [150]: a
range for which it is likely that all five regimes will play a role (Figure 3-7).

While the models have been derived under the assumption of negligible hydrodynamic
dispersion, four of the five models remain valid even in systems with strong dispersivity.
Dispersion will not affect the first and final regimes in which lateral Fickian diffusion domi-
nates, because the flow velocities are negligibly small in these regimes, which in turn makes
hydrodynamic dispersion negligibly small. It will also not affect the models of S-slumping
or straight-line slumping, since these models are based on the assumption of negligible fluid
mixing. These models will still be valid at early times for which advection dominates dif-
fusion and dispersion, though the timespan over which they are valid will likely be reduced
since dispersion would cause the fluids to mix more rapidly.

While hydrodynamic dispersion will not affect most of the regimes, it will affect Taylor
slumping since this regime describes the interplay between fluid mixing and gravity-driven
advection. As a result, the model for Taylor slumping will be accurate in very slow flows
for which dispersion is negligible. If dispersion is not negligible, the physical mechanism
captured by the Taylor slumping model will likely still be valid: mixing will lead to a reduced
lateral density gradient, which will decrease the horizontal velocity until lateral diffusion
dominates the mass transfer. Hydrodynamic dispersion, however, will likely accelerate this

process by enhancing the mixing.
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Figure 3-7: The entire evolution of the miscible lock-exchange problem in a horizontal porous layer
may be described by combining analytical solutions for five flow regimes.

3.6 Supplementary material

3.6.1 Early diffusion

To derive the model for the early diffusion regime, we scale the variables as follows:
z=H( x=1Ln, t=(H?/D)1, p=Pp + pogH(, c=cd, v =V, u=Va/, (3.17)

where P = ApgH is the characteristic pressure and V = Apgk/u¢ is the characteristic
velocity. We define a similarity variable, {¢q = 1/+/7. The scaled concentration equation

(Eq. 4.3) is then:

Eeqa OC 1/2 a ,,, o, , 0% 0
> Ra—— Ra— - —2C = 3.18
23§cd+T aa&d(uc)—iﬂ' aac(wc) asd T8C2 ( )
In the limit 7 — 0, it reduces to:
/ 2.0
Sea d dC (3.19)

2 de T de

This equation is also obtained in the limit Ra — 0 since the initial condition and boundary
conditions make 9%¢//9¢? = 0 for all times. The equation is the self-similar form of a
one-dimensional diffusion equation in a laterally infinite domain. The solution is given in

Equation 3.6.
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3.6.2 Taylor slumping

To derive the model for Taylor slumping, we vertically-average the concentration equation
(Eq. 4.3):
—+ —uc—D— =0, (3.20)

where overbars denote vertical averages (e.g. ¢ =1/H fOH cdz). We then obtain an expres-
sion for the average advective flux, @e, via a perturbation analysis of both the averaged
and unaveraged governing equations. We begin the perturbation analysis by scaling the

variables as follows:
z2=H(, z=L¢ p=Pp +pogHC, c=cid, v=Vv, u=Ud, t="Tr, (3.21)

where V. = Apgk/u¢, U = eV, P = ApgH, and T = L/U. ¢ = H/L, where L is the
lateral extent of the flow, which is unknown a priori but assumed to be large relative to the
layer thickness, H, so that ¢ < 1. We expand the variables in &: ¢ = ¢} + £2c} + O(e?),
u' = uf + e2uly + O(e*), v/ = v} + e2vh + O(e*), and p’ = pf, + &ph + O(e*). The scaled,

vertically averaged concentration equation (Eq. 3.20) to O(g?) is:

2

|

0 /— — 0
Ra [ (06 + 520’2) + — (u606 + 52u{)c’2 + 62u/206):|

o 277\
— 5 o +e 02> —=0. (322

We obtain ¢, ¢, and v from the unaveraged concentration equation (Eq. 4.3):

0 (vhep) _ 9%c

0y . _ _
O(e”) : Ra ac a2 0, o)
acy 0 (upey) 9 (v)cy) o (vheh) 93¢y 03 '
2y . 9% 0% 02 2€0) 976 076 _
O(e).Ra[aTJr o ]+Ra ac + Ra ac o o 0,
and mass conservation equation (Eq. 4.1):
/
0(°) : ‘98729 =0,
3.24
o(2): 2oy P, o
) Tac T

To obtain u},, we first solve Equation 3.24 at O(£") using the boundary condition v}(¢ =
0 0

0,1) = 0 to find v, = 0. This indicates that the pressure at O(g") is hydrostatic, and enables
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us to find u( using Darcy’s law:

, Oy (1
uy = % <2 - C) : (3.25)

To obtain ¢, we solve Equation 3.23 at O(e°) to find ¢, = f(£,7); in other words, ¢ is not
a function of ¢. This result makes use of the no-flux boundary conditions at ¢ = 0,1. To
obtain ¢, we solve Equation 3.23 at O(g?), using Equation 3.24 at O(e?) to simplify the

advective part and Equation 3.22 at O(e) to remove the time derivative. Requiring g =0,

, Ra o)\’ ( 1 ¢ ¢

We now evaluate the average advective fluxes in Equation 3.22: wufc) = 17606 = 0 and

we find:

ubch = uhch = 0 since the average lateral velocity is always zero. This can be seen by
averaging the mass conservation equation (Eq. 4.1) and using the boundary conditions

u/ (¢ — 400) = 0 to find u/ = 0. The remaining advective flux is:

— Ra [0d)\*
hh=——" =2 . 2
0% = 190 ( B¢ ) (3:27)
We now substitute this expression into Equation 3.22 and replace cq using cg = ¢ + O(e?):
_ — 2 —_
oc Ra 0 oc'|” oc 0%

Ro|——c?——||=| == || - 25 + 0" =0. 3.28
“lor ~° 1zoag<[a§] ag)] e T O (3:28)

This is the scaled version of the equation for Taylor slumping (Eq. 3.13).
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Chapter 4

CO> dissolution in

structural and stratigraphic traps

4.1 Summary

Storing COs in structural and stratigraphic traps is a viable option to reduce anthropogenic
emissions. While dissolution of the CO» stored in these traps reduces the long-term leakage
risk, the dissolution process remains poorly understood in systems that reflect the appropri-
ate subsurface geometry. Here, we study dissolution in a porous layer that exhibits a feature
relevant for CO4 storage in structural and stratigraphic traps: a finite CO4 source along the
top boundary that extends only part way into the layer. This feature represents the finite
extent of the interface between free-phase CO4 pooled in a trap and the underlying brine.
Using theory and simulations, we describe the dissolution mechanisms in this system for a
wide range of times and Rayleigh numbers, and classify the behavior into six regimes. For
each regime, we quantify the dissolution flux numerically and model it analytically, with
the goal of providing simple expressions to estimate the dissolution rate in real systems. We
find that, at late times, the dissolution flux decreases relative to early times as the flow of
unsaturated water to the COs source becomes constrained by a lateral exchange flow though
the reservoir. Application of the models to several representative reservoirs indicates that
dissolution is strongly affected by the reservoir properties, but that thick reservoirs with

high permeabilities could potentially dissolve hundreds of megatons of COs in tens of years.
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4.2 Introduction

Structural and stratigraphic traps are regions in a deep layer of porous rock in which an
overlying, low-permeability seal exhibits a concave-down geometry [80]. In structural traps,
this geometry is due to either a large-scale fold in the reservoir or the intersection of a
fault with a dipping region of the reservoir. In the case of a fold, the seal is typically
a layer of fine-grained rock such as shale or mudstone called a caprock; in the case of a
fault, the seal is due to both the caprock and impermeable material within the fault. In
stratigraphic traps, the concave-down shape is due to changes in rock type. For example, a
dipping reservoir may pinch out between two layers of fine-grained rock or terminate in a

unconformity against fine-grained rock (figure 4-1).

Structural and stratigraphic traps are attractive sites for COq sequestration [62]. Their
low-permeability seal inhibits the upward migration of COs, reducing the risk of leakage
to a shallower formation or the surface. While a low-permeability seal can be present at
many locations in a reservoir, structural and stratigraphic traps are particularly appealing
because their concave-down geometry also constrains the lateral spread of CO», reducing
the risk that it will migrate away from the injection site to potential leakage pathways such
as faults or abandoned wells. Another attractive feature is that many traps have proven
seals. When the trap is located in an oil and gas field, for example, the seal quality is

confirmed by the fact that it has retained buoyant hydrocarbons for millions of years.

While structural and stratigraphic traps reduce the risk of COq leakage, they do not
eliminate it. The seal may contain small fractures or faults that allow leakage but that
are not identified in the characterization stage of a sequestration project. In the injection
stage, the seal may be compromised by accidentally overpressurizing the reservoir, which
could hydraulically fracture the seal or cause slip along a pre-existing fault in the seal [61,
139, 28, 109]. After the injection well has been closed, the seal may be damaged by seismic

activity in the future.

Dissolution of the COs into the groundwater mitigates the risk of leakage from an
imperfect or compromised seal. This is because water with dissolved CO5 is more dense
than the ambient groundwater, and will tend to sink rather than rise though a leakage
pathway. Estimating the dissolution rate will help constrain the quantity of COq that will

remain in the target reservoir, and the quantity that will escape.
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Figure 4-1: We study CO5 dissolution in a porous layer that exhibits features of structural traps
such as anticlines and stratigraphic traps such as pinchouts between low-permeability rock. The
layer is semi-infinite to represent the large lateral extent of a deep, geologic reservoir. A portion
of the top boundary (blue line) is held at the saturated CO2 concentration to represent the finite
COs-groundwater interface.

CO, dissolution has been well studied in idealized systems. These systems commonly
include laterally infinite porous layers [48, 167, 138, 143], laterally periodic porous lay-
ers [136, 135, 69], and laterally closed porous layers in which the side walls are no-flow
boundaries [138, 64, 123, 87, 11, 68, 144]. The COxz-brine interface is typically represented
by fixing the top boundary of the system at COq saturation. In these systems, dissolution
initially occurs via diffusion only, leading to a diffuse boundary layer of COs-rich fluid below
the top boundary. Since the boundary layer is more dense than the underlying fluid, it is
unstable and breaks up into descending fingers after a time proportional to D/V?2, where
D is the diffusion coefficient and V' is the characteristic buoyancy velocity, as defined in
§4.3 [48, 167, 138, 64, 143]. Due to conservation of mass, fresh water simultaneously rises
upward, leading to sharp concentration gradients at the top boundary that increase the dis-
solution flux. The exact expression of the enhanced dissolution flux remains controversial:
experimental studies in analog systems suggest it depends on the Rayleigh number [11, 123],
while numerical studies indicate it is independent, at least in the limit of very large Rayleigh
numbers [135, 69]. After the fingers reach the bottom of the reservoir, dissolved CO2 begins
to circulate back to the top, lowering the concentration gradients and causing the dissolution
rate to continually decrease [144, 68].

Here, we study COq dissolution in a porous layer that more closely reflects storage in
a structural or stratigraphic trap. Like most previous studies, we represent the interface
between the free-phase CO5 and groundwater via a boundary condition: we fix the concen-

tration along the top boundary at the saturated COqy concentration. Unlike many studies,

125



however, we apply this condition along only part of the top boundary to represent the finite
extent of the interface. To account for the observation that many traps exist in reservoirs
that are laterally extensive relative to the thickness of the layer and width of the trap, we
set the right boundary at infinity. This combination of a finite CO5 source in a laterally
extensive layer represents either a stratigraphic trap or a structural trap like an anticline

that is nearly symmetric about its axial plane (figure 4-1).

While this system represents a geologic trap, it is an idealization. In contrast to an actual
trap, the porous layer is homogeneous, isotropic, rectilinear, and perfectly horizontal. There
is also no natural background flow and we neglect hydrodynamic dispersion. We invoke these
simplifications to focus on the physics of dissolution from a finite CO4 source, and address

some of the limitations they entail in the Discussion section.

In contexts outside of COo sequestration, some studies have investigated natural con-
vection in geometries similar to our idealized COq trap. Elder [45] studied heat transfer
in a porous medium in which a portion of the lower boundary was held at an elevated
temperature. This system, sometimes called the Elder problem, is similar to ours in that
both involve a laterally finite source modeled by a Dirichlet boundary condition; it differs
in that the medium is finite and the remaining walls are all held at zero temperature, so a
steady-state exists. Wooding et al. [165] and Wooding et al. [166] studied the infiltration
of dense, saltwater fingers into a porous layer from an overlying salt lake. This system,
often called the salt-lake problem, is also similar to ours in that it involves a finite source;
it differs in that the lake exhibits evaporative loss, which both concentrates the salt and
drives convection from the surrounding area to the lake, partially stabilizing the saline
boundary layer. Cheng and Chang [27] studied boundary layer flow in a porous medium
partially overlain by a cold boundary or partially underlain by a hot boundary. This system
is similar to ours in the same way as the Elder and salt-lake problems. However, it differs
in that the domain is laterally infinite and vertically semi-infinite. Furthermore, due to
the boundary-layer approximation, the analysis of Cheng and Chang [27] can not capture
fingering or any subsequent behavior. While all of these studies provide insight into natural
convection from a finite source, they provide a limited understanding of how COq dissolves

in the subsurface.

We find that COs dissolution in our idealized geologic trap occurs through several mech-

anisms. These mechanisms vary spatially along the length of the COs source: along the
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inner regions of the source far from the edge, the dissolution mechanisms are nearly iden-
tical to those observed in previous studies of COq dissolution; near the edge, however, the
mechanisms are novel and are strongly impacted by flow in the porous layer outside the
source region. The dissolution mechanisms also vary temporally, and the different periods of
behavior can be organized into seven regimes (figure 4-2). For each regime, we describe the
mechanisms and quantify the dissolution flux numerically. We also develop an analytical
model of the dissolution flux in each regime, with the goal of providing simple expressions

to estimate dissolution rates that can be expected in practice.
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Figure 4-2: Dissolution evolves through the seven regimes shown here (Ra = 3000). The color scale
represents the concentration of COq, ¢, normalized to the saturated concentration, ¢s. The scalings of
the transition times between the regimes are shown in terms of the layer thickness, H, the diffusion
coefficient, D, and the characteristic velocity, V' = Apgk/u¢ (see §4.3). When Ra = VH/D is
sufficiently small, the first and final transition times become equal, the duration of the intermediate
regimes becomes zero, and the system transitions directly to the late diffusion regime.
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4.3 Governing equations

Under the Boussineq approximation, the density-driven flow of incompressible, miscible

fluids in a porous medium is described by the following system of equations [127]:

V.-u=0, (4.1)
w=— " (Vp— ple)g?) (4.2)
/ng p g ) .
Oc 9
S +u-Ve—DVie=0. (4.3)

Equation 4.1 expresses conservation of mass for the entire fluid mixture, equation 4.2 is
Darcy’s law, and equation 4.3 is the concentration equation. The variables are as follows:
¢ is the CO2 concentration, D is the diffusion coefficient, u = (u,v) is the pore velocity, k
is the permeability, p is the dynamic viscosity, ¢ is the porosity, p is the pressure, g is the
gravitational acceleration, and p is the density. We assume that density is a linear function
of the concentration: p = pg + Apé, where Ap is the density difference between water and
COs-saturated water, and cg is the saturated concentration of COs. Substituting Darcy’s

law into equation 4.1 yields the pressure equation:

dp
2
=g—. 4.4
V=95 (4.4)
Taking the curl of Darcy’s law yields the vorticity equation:
ou v oc
— = 4.5
YT 9, 8. ox’ (45)

where w is the vorticity in the y-direction (see figure 4-1), ¢’ is the concentration normalized
to the saturated concentration (¢’ = ¢/cs), and V' = Apgk/u¢ is the characteristic buoyancy

velocity. This equation shows that lateral concentration gradients drive vortical flow.

The initial condition is that the velocity and concentration are zero everywhere:

u(z,z,t=0) =0, c(z,z,t=0)=0. (4.6)

The boundary condition for the concentration equation along the top of the layer is defined

129



piecewise:

Oc
c(z=0,-W <z <0) = c, — =0, (4.7)
0z 2=0,x>0
where W is the width of the CO2 source (figure 4-1). For most of the study, we perturb the
constant-concentration boundary condition with random noise of magnitude e = 1 x 10 3¢

The remaining boundary conditions are no-diffusion on the bottom and left walls and no-

flow on all walls; the right wall is infinitely far away:

v(z=0,H)=u(lx = -W,00) = %

_ Oc

= — =0. 4.
z=H Ox ! ( 8)

z=—W, 00

The key variable we use to parametrize the system is the mean dissolution flux. The
point flux, f, is defined at every location along the COs source via Fick’s law; the mean

flux, f, is the lateral average:

Jc

f(I,t) =-D E 2207

F(t) = % /_ OW ) de. (4.9)

When all the equations are made dimensionless, there are two governing parameters.
One is the Rayleigh number, Ra = V H/D, which compares the strength of advection to
diffusion. The second is the dimensionless width of the COqy source. For early regimes at
high Rayleigh numbers, we use the most unstable wavelength, \., to non-dimensionalize the
width; this parameter roughly reflects the characteristic finger width immediately after the
onset of fingering. Based on the results of stability analyses, we define the most unstable
wavelength to be A\, = 90D /V? [48, 167, 138], which qualitatively agrees with our numerical
results. For late regimes after the fingers reach the bottom of the layer, we typically use
the layer thickness, H, to non-dimensionalize the width. Since we expect the length of
the COa-brine interface to be larger than the reservoir thickness in practice, we focus on

systems for which W > 4H.

In general, we solve the governing equations numerically. We integrate the pressure
equation using finite volumes and solve it with a fast Poisson solver. To solve the concen-
tration equation (eq 4.3), we also integrate using finite volumes, but additionally employ
linear reconstructions and the MC limiter to maintain second-order accuracy [101]. We
integrate in time using Runge-Kutta methods [94]: for short-time simulations, we use an

explicit, two-stage method, and for longer simulations, we switch to an implicit-explicit two-
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stage method to remove the time-step restriction from the diffusion term [6]. Both time
integration methods are second-order accurate. We have performed a convergence analysis
to confirm that the numerical method and discretizations used are sufficient to quantify the

dissolution flux accurately.

4.4 Dissolution regimes

4.4.1 Early diffusion (ed)

At the earliest times, dissolution occurs via diffusion without convective enhancement in
regions far from the edge of the source. This process creates a diffuse layer of COs-rich fluid
directly under the top boundary.

At the edge of the source, however, convection begins immediately since the smallest
amount of diffusion leads to a lateral concentration gradient there, which drives vortical
flow (eq. 4.5). For Ra 2 55, this flow creates a single finger at the edge (figure 4-3a), as has
been observed in the Elder and salt-lake problems [45, 165, 166]. The propagation of this
finger perturbs a neighboring region of the diffuse, COs-rich boundary layer, which locally
destabilizes the layer and creates an adjacent finger (figure 4-3b). This process successively
triggers fingering along the source until other perturbations—either numerical or physical—
destabilize the entire boundary layer (figure 4-3c). For the remainder of the study, we
impose random perturbations in the constant-concentration boundary of magnitude ¢ =
1 x 107 3¢, for which only one or two fingers form at the edge before the entire boundary
layer destabilizes (figure 4-3d). This decision was motivated by the expectation that large
perturbations will be present during CO4 storage in real geologic traps.

When the length of the CO5 source is large, the initial convection exerts a negligible
effect on the mean dissolution flux. For the perturbation we impose and Ra < 55, the
initial convection is negligible provided W > 4H. For Ra 2 55, fingering occurs at the
edge, so the domain must be much larger than the characteristic width of a finger for
the fingering process to be negligible. Numerically, we find that convection is negligible
provided W > 30A.. When convection is negligible, the flux may be modeled by the flux

for a 1D-diffusion problem in a semi-infinite domain [31],

_ DA\ /2
fed = Cs <7rt> ) (4.10)
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Figure 4-3: Initially, dissolution occurs via diffusion without convection along the interior of the CO4
source, but convection occurs immediately at the edge (all results for Ra = 4000). a. Convection
causes a single finger to form at the edge for high Ra (t = 927D/V?2, A\ = 90D/V). b. This finger
triggers the formation of an adjacent finger (¢t = 3015D/V?). c. Fingering propagates inward until
the entire source becomes unstable. This process is reflected in the point fluxes along the source:
since finger roots are highly saturated, the vertical concentration gradient immediately above a finger
is small, and the dissolution flux is therefore also small. As a result, the dark red branches in the
surface plot of the point fluxes trace the finger movements. Here, a small perturbation is present
(e =1 x 107 4¢y), so the fingering front can advance far to the left before the perturbation triggers
fingering everywhere. d. When a larger perturbation is present (¢ = 1 x 1073¢;), the perturbation
triggers fingering across the whole source relatively quickly before the fingering front can advance
far from the edge.

as shown in figure 4-4.

The diffusion model is valid before the system transitions to the next regime, which
depends on the Rayleigh number. For Ra < 55, the next regime is late diffusion and the
transition occurs when the diffusion front reaches the bottom of the layer: tiqy = H?/D
(figure 4-4a). For Ra 2 133, the next regime is fingering and the transition occurs at
ty = D /V?, as found in previous studies [48, 167, 138, 64, 143]. The constant 1 depends
on the criterion used to define the onset of fingering. Here, we define the onset as the
time when the mean flux reaches a local minimum before rising sharply due to fingering
(figure 4-4b). Based on this criterion, we find that i) &~ 2000. For intermediate Rayleigh
numbers, 55 < Ra < 133, the subsequent regime is unclear so the transition is not well

defined; however, we find that the diffusion solution is valid until a time between t,q; and

t.

4.4.2 Fingering (f)

In the fingering regime, CO» diffuses into a thin boundary layer that breaks up into sinking

fingers. Over the interior of the CO4 source, this behavior is nearly identical to the fingering
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Figure 4-4: During the early diffusion regime, the mean dissolution flux, f, can be modeled by the
flux from a 1D diffusion problem (dashed lines; eq 4.10), provided the source is large enough for edge
convection to be negligible. a. For Ra < 55, edge convection is negligible provided W 2 4H, and
all numerically-measured fluxes (colored) collapse to the diffusion solution. This solution becomes
invalid at tjq1 ~ H?/D, when the system transitions to the late diffusion regime. b. For Ra > 133,
all numerically-measured fluxes (colored) collapse to the diffusion solution provided W 2 30A.. The
diffusion solution becomes invalid at t; ~ D/V?2, when the system transitions to the fingering regime.

process described in previous studies: as the fingers fall, relatively unsaturated water simul-
taneously rises to the source, which maintains large concentration gradients that increase
the dissolution rate compared to the previous regime. Near the edge of the source, however,
the unsaturated water comes dominantly from the porous layer outside the source region
(figure 4-5a). Since the water does not travel upward between descending fingers to reach
the source, it is nearly completely unsaturated, leading to higher dissolution fluxes than in
the interior (figure 4-5b). These fluxes are similar in magnitude to those that occur imme-
diately after the onset of fingering, when the dissolution flux reaches a local maximum [144].
Directly at the edge, the inflow of water stabilizes a small boundary layer, which can be
modeled with the boundary layer solution derived by Cheng and Chang [27] (figure 4-5¢).

For Ra Z 2000, the mean dissolution flux during the fingering regime oscillates, but
remains approximately constant in time (figure 4-5d). Since the fluxes near the edge are
larger than those in the interior, the value of the mean flux depends on the size of the COq
source. We find that when the source is larger than about 100\., the mean flux converges
to

[ = 0.017¢V, (4.11)

in agreement with previous results (figure 4-5e) [135, 69]. The flux begins to decrease from
this value at about tg = 15H/V, which is the time required for dissolved COg to sink to

the bottom in fingers and then recirculate back the the top boundary.
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For 133 < Ra < 2000, the flux rises to a peak after the onset of fingering and then
continually declines with minor oscillations, as observed in previous work [64]. While the
flux fails to exhibit a steady steady, equation 4.11 provides a lower bound on the flux. Since
the flux continually declines, the transition to the next regime is not well defined, but we
adopt the transition time for higher Rayleigh numbers (t = 15H/V) and find agreement

with numerical results.

4.4.3 Shutdown/fingering (sf)

During the shutdown/fingering regime, the source region exhibits three zones of different
behavior (figure 4-6a). In the inner zone, dissolved COz sinks to the bottom of the layer in
fingers and then recirculates back to the top boundary, where it reduces the concentration
gradients and therefore also the dissolution fluxes. This behavior is essentially identical to
the convective shutdown behavior observed in closed systems [68, 144]. In the outer zone,
fingering occurs in the unsaturated water that flows in from the porous layer outside the
source region. This inflow is the counter-current to the flow of dense, COs-rich fluid that
migrates away from the source along the bottom of the layer (figure 4-6a). In the middle
zone, dissolved COy from the outer zone enters from the right and flows to the left along
the top part of the layer (figure 4-6b). COs also dissolves via fingering in this zone, but the
fingers dominantly remain in the top part of the layer; this is reflected in the observation
that the vertical velocities go to zero along the midline of the layer (figure 4-6¢). As the flow
advances toward the interior, dissolution continues until the concentration rises to values
similar to those in the inner zone, at which point the horizontal velocities become very small
and the dissolved COg3 sinks to the bottom. In the bottom part of the layer, the dissolved
CO4 flows to the right as a dense gravity current and eventually leaves the source region.

To model the mean dissolution flux in this regime, we first obtain models for each of the
three zones, focusing on high-Ra systems (Ra 2 2000). In the outer zone, the dissolution
mechanism is very similar to the previous regime and the mean dissolution flux can be
modeled with the previous result: f., = 0.017¢;V. While the actual flux is slightly higher
due to the inflow of nearly completely unsaturated water, we use this value for simplicity
and find it to be sufficiently accurate. This zone extends over the range z,, < z < 0,
where xy,, is the right boundary of the middle zone (figure 4-6a). We find empirically that
Tmz ~ — 0.3H.
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Figure 4-5: During the fingering regime, COs-rich fingers fall to the bottom of the layer and fresh
water circulates to the source. a. Over the interior of the source, the unsaturated water comes
from below; at the edge, it comes from the porous layer to the right (shown for Ra = 10,000).
b. The inflow of water from outside the source region sweeps fingers to the interior, as shown by the
repetition of diagonal red branches along the right side of the surface plot (Ra = 10,000). The blue
regions between the branches indicate that the fluxes are higher near the edge than in the interior.
c. A stable boundary layer exists directly at the edge. Numerical measurements of the flux there
(colored) agree with the analytical solution (dashed). d. For Ra = 2000, the mean dissolution flux
oscillates but is approximately constant in time (W > 100A.). e. When the length of the COq

source is larger than about 100\, the mean flux converges to f = 0.017¢,V.
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Figure 4-6: In the shutdown/fingering regime, the source region can be divided into three zones
(dashed orange lines). a. In the inner zone, dissolution decreases due to the accumulation of dissolved
COs;. In the outer zone, dissolution remains at relatively high rates due to the inflow of unsaturated
water along the top of the layer. In the middle zone, the dissolution rate transitions between the
neighboring zones. b. The horizontal velocities in the middle zone are dominantly to the left in
the upper part of the layer, sweeping dissolved CO5 toward the interior. In the lower part of the
layer, they are dominantly to the right, carrying dissolved CO4 outside of the source region. c. The
vertical velocities in the middle zone are large in the upper part of the layer but nearly vanish at
the centerline, indicating that fingering is mostly confined to the top. d. Analytical models for the
dissolution flux in each zone (red; eqs 4.13, 4.16, and 4.11) agree well with numerically-measured
fluxes along the source (black). e. We average the flux models from each zone to find the mean
dissolution flux over the entire source. The averaged model (long dashed: W = 5H, short dashed:
W = 10H; eq 4.18) agrees well with numerical results for Ra 2 2000.
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In the inner zone, dissolution occurs via the convective shutdown mechanism described
by Hewitt et al. [68] and Slim et al. [144], and can be modeled with the box models they
derived:

i =1—(1+ Kt —to)V/H)™", (4.12)
?iz =cVk <1 - ?iz>2 . (4.13)

Here, ?iz is the dimensionless mean concentration in the inner zone (double overbars denote
averaging over both vertical and horizontal dimensions), f;, is the mean dissolution flux into
the inner zone, t( is a virtual time origin, and & is a constant. Slim et al. [144] used the
ad hoc value of k = 0.05, and Hewitt et al. [68] derived the value to be x = 0.028 based
on analogy to Rayleigh-Bénard convection; both used ¢ty = 0. We empirically find that
k = 0.028 and ty = 5H/V provide the best fit to the data.

In the middle zone, we develop a model for the upper part of the layer that couples
horizontal advection and dissolution due to fingering. To derive the model, we vertically
average the concentration equation (eq 4.3) and make several assumptions. We assume that
diffusion is negligible compared to advection outside the boundary layer at z = 0, and that
the horizontal velocity in the upper part of the layer, u.,,, is independent of both = and
z. Numerical results show that this is not strictly true, but we find that this simplification
captures the general behavior and yields acceptable results. We also assume that the vertical
mass flux from the upper part of the layer to the lower part is negligible. This assumption
is valid over most of the middle zone since the high COy concentrations in the underlying
gravity current cause the vertical velocities to become negligibly small along the midline
of the layer (figure 4-6¢). The assumption is invalid at the left boundary of the zone were
nearly all the dissolved CO4 sinks to the bottom layer, but we find that this region is small
and has a minor impact on the results. Finally, we assume that the dissolution flux can be
modeled with the expression from the convective shutdown model, equation 4.13. Since the
convective shutdown model is derived via horizontal averaging over several finger widths,

this assumption causes our model to capture behavior at the scale of several fingers.
Under these assumptions, we derive an advection equation that incorporates the expres-

sion for the dissolution flux from the shutdown model (eq 4.13) as a forcing term:

aoc od  Vk 2
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where 7 is the thickness of the upper layer and overbars denote vertical averages over 7. For
the boundary condition, we fix the concentration at the right boundary: ¢(z = ;) = R,
where /g is the vertically averaged concentration that enters from the outer zone. Based
on numerical observations, the behavior in the upper layer is essentially time invariant, so

we solve the equation at steady state::

- Vi 1 -1
oy =1— <Umz77 (x — Tmz) + = c’R> , (4.15)
- Vk 1 -2
e = VK <Umz77 (x — Tmz) + - c’R> . (4.16)

Since the model is a hyperbolic equation, the position of the downstream boundary to
the left, xi,, was not required for the solution. We define the location of this boundary a
posteriori as the point at which the vertically averaged concentration in the middle zone

equals the mean concentration in the inner zone. Equating equations 4.12 and 4.15, we find:

Uz \%4 R
= Ty t—ty) = — — B ) 4.1
Tiy = Ty + 7 <I€( 0) " 1 c’R> (4.17)

Based on this definition, the location of the left boundary continually moves toward the
interior as the inner region becomes more saturated, which agrees with observations from
the simulations. We set the thickness of the top layer and the velocity empirically from
numerical data: n = 0.3H and uy, = —0.07V. We set the mean concentration at the
right boundary to ensure continuity of the dissolution flux with the outer zone: ¢'gr =
1 — (fo,/k)"? = 0.22 (see eq 4.13). This value matches observations from the simulations

(figure 4-6a).

We find that, for Ra 2 2000, the dissolution flux at every location along the CO5 source
can be approximated by combining the models for each of the three zones (figure 4-6d). To

determine the mean dissolution flux over the source, we average the models:

_ 1 Tiz Tmz 0 o
fsf = T1r |:/ fizdx =+ / fmzdx + / fozdx:| ) (418)
W —-W Tiy Imz

As shown in figure 4-6e, the solution for the mean flux agrees with numerical measurements.
The solution becomes inaccurate at roughly ts = 100H/V, when the system transitions to

the next regime.
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4.4.4 Shutdown/slumping (ss)

In the shutdown /slumping regime, the source region exhibits two zones of different behavior
(figure 4-7a). In the inner zone, the dissolution mechanism is the same as in the previous
regime: convective shutdown. In the outer zone, the mechanism is similar to that in the
previous regime: dissolution occurs via fingering into relatively unsaturated fluid that flows
in from the layer outside the source region. As before, this flow is the counter current to
the dense, COs-rich gravity current that slumps away from the source. The difference is
that, in this regime, the extent of the gravity current is large relative to the thickness of
the layer, and as a result, the flux of CO5 out of the source region continually decreases
with time. Since the outer zone is nearly saturated, this causes the dissolution flux into the

outer zone to also continually decrease with time, whereas previously it was constant.

To model dissolution in the outer zone, we develop a box model that relates the mean
dissolution flux to the flux into the dense gravity current. To derive the model, we average
the concentration equation (eq 4.3) over the outer zone in both the vertical and horizontal
directions: _

oc oy 1

ot @ (711(33 = j,) — fr(z = 0)) + %?OZ' (4.19)

?OZ is the dimensionless mean concentration in the outer zone, Th(x = mj,) is the mean
horizontal mass flux from the inner zone to the outer zone, fi,(x = 0) is the mean horizontal
mass flux from the outer zone into the gravity current, and f, is the mean dissolution flux
into the outer zone (figure 4-7a). When the accumulation term on the left and the mean

flux from the inner zone to the outer zone are negligible, the equation becomes

?oz = 7?}1(% = 0)7 (420)

which states that the mean dissolution flux in the outer zone is directly proportional to the
flux into the gravity current. Based on numerical results, we find that the flux from the
inner zone to the outer zone is approximately zero when xj, = 3H (figure 4-7c). In contrast

to the previous regime, the location of the boundary is fixed in this regime.

To quantify the flux into the gravity current, we model the migration of the current.
We assume that vertical velocities in the current are negligible compared to the horizontal

velocities (Dupuit approximation), which is justified by the large lateral extent of the current
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relative to its height in this regime [17]. We also assume sharp interfaces. Since diffusion is
the only mechanism by which mass enters the system, the interface is always diffuse, but we
treat is as sharp for simplicity and find agreement with numerical results for high Rayleigh
numbers (Ra 2 2000). Under these assumptions, the height of the sharp interface, h, can
be modeled by the following equation [17, 34, 77]:

oh 0 h\ Oh

Frie V% {h (1 — H> 895] =0, (4.21)
where h is measured from the bottom of the layer. We solve this equation in a semi-infinite
domain with the left boundary fixed at the right edge of the source region. For the left
boundary condition, we fix the height of the current at z = 0 to be h = 0.7H based on the
observation that the current remains pinned at the edge of the source. We transform the
equation into a self-similar form using the similarity variable & = x/(V Ht)'/?, and then
integrate it numerically. We find that the solution matches the gravity current in the full,

2D simulations (figure 4-7b). From the solution, we calculate the mass flux into the current

- 1d o HV\'?
_oy =19 (. —0.26c. (22 1.22
frn(x=0) T o (c /0 hda:) 0.26¢, < ; > (4.22)

where x, is the rightmost edge of the current at which h = 0 and ¢, is the concentration

to be

of the current, which we set empirically to 0.65¢s. This expression shows that the flux into
the gravity current decreases diffusively in time with the scaling ¢~1/2, which is due to the

fact that the horizontal velocities in the current decrease diffusively in time.

To model the mean dissolution flux over the entire source, f.,, we average the fluxes

from both zones:

_ 1 Tiz 0 _
iy
1

(W —3H)xk <1 +oR(t — tO)Zr) - N O‘QGH% (i) 1/2] | (4.23)

—cV—
“Y'w

This expression agrees with numerical measurements of the mean flux (figure 4-7d). It
becomes invalid at t; = 6(H®/V D)'/?, when the system transitions to the shutdown/Taylor

slumping regime.
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Figure 4-7: a. In the shutdown/slumping regime, the source region can be divided into two zones
as shown by the dashed orange lines (Ra = 10,000). The inner zone is the same as in the previous
regime. The flux into the outer zone, f,,, can be modeled from the flux into the dense gravity
current, f (x = 0). b. The flux into the gravity current can be derived from a sharp-interface model
of the current (dashed; eq 4.21), which matches the shape of the current from full, 2D simulations
(Ra = 10,000). c. The flux into the current provides a good approximation of the flux into the outer
zone when the flux between the two zones, f,(z = i), is very small. Numerical measurements of
the mean horizontal flux, f,, indicate that this can be achieved by placing the zone boundary at
Ziy, = —3H. d. The model for the mean dissolution flux over the entire source (short dashed:
W = 10H, long dashed: W = 5H; eq 4.23) agrees with numerical results (colored). Data are
truncated at the onset of the next regime for clarity.
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4.4.5 Shutdown/Taylor slumping (sT)

In the shutdown/Taylor slumping regime, the source region can be divided into the same two
zones present in the previous regime. The inner zone is exactly the same, with dissolution
occurring via convective shutdown. The outer zone exhibits similar behavior to the previous
regime in that the dissolution rate is limited by rate at which COg-rich fluid can slump away
from the source region as a dense gravity current. It differs, however, in the nature of the
gravity current. Whereas previously advection dominated diffusion, in this regime diffusion
becomes equally important and a broad transition zone develops between the dense current
and the over-riding counter-current (figure 4-2). As a result of diffusive mixing, the current
decelerates faster than in the previous regime, and consequently the flux of CO5 out of the
source region also decreases faster. A complementary interpretation is that the dissolution
flux decreases faster because the counter-current no longer supplies nearly unsaturated fluid
to the source region, but rather fluid with high saturations of CO4 originating from the dense
gravity current.

To model the dissolution flux in the outer zone, we employ the box model from the
previous regime that relates the dissolution flux to the flux into the dense gravity current
(eq 4.20). However, to model the flux into the current, we now use a model that captures
diffusive mixing between the dense current and the counter-current. The model, called
the Taylor slumping model, is a partial differential equation for the vertically averaged

concentration in the porous layer, ¢ [148]:

= 2 4772 2 o
o 0% 6<HV [ﬂ ac>:0‘ (424)

ot T 9z2  9x \120D2 |9z | Oz
The middle term in this equation is a Fickian diffusion term. The rightmost term can
be interpreted as a nonlinear diffusion term that captures the coupling between Taylor
dispersion at the aquifer scale and the reduction in lateral concentration gradients that
drive flow [148]. Scaling these terms shows that the Fickian diffusion term is negligible
compared to the nonlinear term when the aspect ratio of the current is small relative to
the Rayleigh number: L/H < Ra/+/120, where L is the lateral extent of the current. As
a result, the nonlinear term dominates at early times before the current becomes too large,
and we neglect the Fickian diffusion term until the last regime.

We solve the Taylor slumping equation in a semi-infinite domain with the left boundary
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at the right edge of the source region. For the boundary condition, we fix the vertically
averaged concentration to the completely saturated concentration (¢/(x = 0) = 1). Since
the actual concentration at the boundary remains below saturation, this simplification in-
troduces error in the model; however, the error decreases with time as the source region
approaches saturation. We solve the equation analytically via a similarity solution in the

variable &éps = 2/(H*V?t/120D)Y*:

CCS =1- %}ﬁ €s (042 - 5%5) 2 + o arcsin (?)] ) (4.25)

where o = (198/72)'/4. This solution agrees with numerical measurements of the ver-
tically averaged concentration. The agreement improves over time since the model is an
asymptotic [148], and since the boundary condition becomes increasingly accurate with time

(figure 4-8a). From the solution, we find the flux into the current:

- 1 d o 8\ HYVV
fu(z=0)= T <H/0 cdx) = ¢ <4057T6> < ol > . (4.26)

This equation agrees with the numerically measured fluxes out of the source region (figure 4-

8b). It shows that, in contrast to the previous regime, the flux into the gravity current
decreases sub-diffusively. We find empirically that equation 4.26 becomes valid at time
tep = 6(TaTp)Y? = 6(H?/VD)Y2, where T4 = H/V is the characteristic advection time
across the layer and Tp = H?/D is the characteristic diffusion time across the layer. While
the precise physical origin of this scaling is unclear, the dependence on both advection and

diffusion timescales is reasonable since the model couples advection and diffusion.

While the convective shutdown mechanism continues to operate in the inner zone, we
use an extended form of model from the previous regimes. The extended model captures
behavior at low Rayleigh numbers and long times more accurately than the previous model.

It was derived by Hewitt et al. [68]:

p— _].
dw:1_7k1+w&ﬂ“WWH—q , (4.27)

_ = \2 =
fw:%Vﬁhlﬁ» +700@ﬂ, (4.28)
where v = f/kRa and 8 = 2.75. The previously used model can be derived from this model
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when v < 1. As with the previous model, this model agrees with numerical measurements

of the dissolution flux in the inner zone (figure 4-8c).

To determine the mean dissolution flux over the source region, we average the fluxes in
the inner and outer zones. The flux into the inner zone is given by the extended convective
shutdown model (eq 4.28). The flux into the outer zone is given by combining the box
model (eq 4.20) with the expression for the flux into the gravity current (eq 4.26). For the
left boundary of the box model, we take xi, = —3H as in the previous regime. The mean

dissolution flux is then

_ 1 Tiz _ 0 _
fST_W</;W fide+/gciZ fozdx>a

1 . ] 1/4 H4V2 1/4
— W =3H)F, +eH () () |
W [(W S8H)fiu + ¢ <4O57T6> < D3 >

where f;, is given by eq 4.28. This expression agrees with numerically measured fluxes.

(4.29)

The agreement improves for larger Rayleigh numbers because the shutdown model becomes
more accurate for larger Rayleigh numbers. The agreement also improves with time as the

Taylor slumping model becomes more accurate (figure 4-8d).

This validity of equation 4.29 is limited by the late-time validity of the convective shut-
down model. We estimate the time at which the convective shutdown model becomes
invalid as the time when the effective Rayleigh number, Ra., decreases to the critical value
for convection, Ra.. The effective Rayleigh number is based on the density difference be-
tween the saturated upper boundary and the fluid in the porous layer, and as a result, is
a function of the mean concentration in the layer. Following Hewitt et al. [68], we define
the effective Rayleigh number as Rae = 4Ra(l — ?iz)' The critical Rayleigh number in
a Rayleigh-Bénard flow is Ra. = 472 [127]. While the present system is not a Rayleigh-
Bénard problem, we take this value because the derivation of Hewitt et al. [68] is based
on an analogy to Rayleigh-Bénard flow. Solving for the time at which Ra, = Ra. yields
trs = (H?/D)(1/B)In[(48/kRac)(1 + )], which in the limit of large Ra (y < 1) be-
comes trs ~ H?/D. Numerical results confirm the validity of the model until this time

(figure 4-8c).
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Figure 4-8: a. In the shutdown/Taylor slumping regime, the dissolution flux into the outer zone
is controlled by the flux into a diffuse gravity current, which we model with the Taylor slumping
model (eq 4.24). The model results for the vertically averaged concentration in the layer (dashed;
eq 4.25) agree with numerical measurements (colored), particularly at late times. b. The model
results for the flux into the gravity current (dashed; eq 4.26) agree with numerical measurements
of the flux (colored) exiting the source region (all data for W > 3H). Data are truncated at the
transition to the next regime for clarity. The simultaneous convergence of all data to the model
indicates that the onset time of Taylor slumping scales as typ ~ (H?/V D)2, which is the onset
of the shutdown/Taylor slumping regime. c. In the inner zone, dissolution continues to occur via
convective shutdown. In this regime, we use an extended form of the shutdown model (long dashed:
Ra = 6000, short dashed: Ra = 150; eq 4.28), which describes the numerical fluxes (colored) for
Ra 2 133 until tpg ~ H?/D, when the system transitions to the next regime. d. The model for
the mean dissolution flux from the entire source (long dashed: Ra = 6000, W = 10H, short dashed:
Ra = 8000, W = 5H; eq 4.29) agrees with numerical measurements (colored), particularly for large
times and Rayleigh numbers. Again, data are truncated at the transition to the next regime for
clarity.
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4.4.6 Taylor slumping (Ts)

After time tpg = H?/D, the interior of the source region is essentially completely saturated
with COg and convection becomes negligible there (figure 4-2). At the edge, convection
slows but continues to enhance dissolution via the influx of water with relatively low COs
concentrations from the layer outside the source region. While the concentrations are low
relative to the concentrations in the interior of the source where convection is nearly absent,
they are near saturation due to diffusive mixing from the dense gravity current. This
behavior is exactly the same as in the previous regime, but the concentrations in the inflow
are higher since the dense gravity current is now longer.

To model the mean dissolution flux in this regime, we use a box model that spans the
entire source region. As in the previous two regimes, the model relates the dissolution flux
to the flux from the edge of the source into the layer. To model the flux into the layer, we

again use the result from the Taylor slumping model (eq 4.26). The mean dissolution flux

-~ H- H( 8 \Y*/Hv2\*
Fro= gt =0 =gy (o) () (4.30)

This equation represents a lower bound on the dissolution flux since it assumes that the

is:

accumulation of COq in the entire source region is negligible. In practice, the accumulation
is non-zero, but approaches zero with time as the layer becomes completely saturated. The

equation agrees with numerical results (figure 4-9a).

4.4.7 Late diffusion (1d)

At the latest times, convection is negligible relative to diffusion over the entire domain. The
dominant dissolution mechanism is diffusion without convective enhancement at the edge
of the source, and the dominant transport mechanism outside the source region is lateral
diffusion through the porous layer. For high Rayleigh numbers (Ra 2 133), this behavior
occurs when the dense gravity current that transports COs away from the source becomes
very long. When the current becomes long, the horizontal density gradient that drives the
flow becomes very small and, as a result, the velocity becomes very small. The relationship
between the lateral velocity, u, and the gradient of vertically-averaged density, p, is

u(z) = ﬁ{gﬁ <; - ;) 0(e2), (4.31)
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Figure 4-9: In the last two regimes, Taylor slumping and late diffusion, we model the mean dissolution
flux using only the horizontal flux out of the source region. a. Numerical measurements of the
dissolution flux (colored) in the Taylor slumping regime agree with the model (long dashed: W = 4H,
short dashed: W = 8H; eq 4.30). The data are truncated at the onset of the next regime for clarity.
b. Numerical measurements of the dissolution flux (colored) in the late diffusion regime also agree
with our model (long dashed: W = 4H, short dashed: W = 8H; eq 4.32). The simultaneous
convergence of numerical results to the model indicates that, for Ra 2 133, the onset time of late
diffusion scales as tjgo ~ H*V?2/D3.

where ¢ = H/L and L is the horizontal extent of the flow [148]. By equating the flux from
lateral diffusion (eq 4.32) with the flux from Taylor slumping (eq 4.30), we find the time at
which diffusion dominates to be tiq2 = (8/4057%)(H*V?2/D3).

For lower Rayleigh numbers, the transition to dissolution via lateral diffusion occurs at
a different time. For Ra < 55, the previous regime is early diffusion, in which dissolution
occurs dominantly via diffusion in the vertical direction without convective enhancement.
When vertical diffusion is the preceding mechanism, the transition occurs when the diffusion

front reaches the bottom of the layer at approximately tjq; = H?/D, as discussed previously.

To model the dissolution flux, we use a box model that spans the entire source region as
in the previous regime. To model the lateral flux out of the source region, we use the flux

from a 1D diffusion problem in a semi-infinite domain. The mean dissolution flux is then:

_ H_ H D\ /2
fia = th(ﬂﬁ =0)= we <7rt> . (4.32)

This is the same equation as for the first regime (eq 4.10), but with an additional dependence
on the ratio of the layer thickness, H, to the width of the source, W. This dependence
indicates that when the source width is large relative to the layer thickness, the late-time

dissolution flux will be smaller than the early-time flux since all the mass transfer must
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occur though a smaller space. This solution agrees with numerically measured dissolution

fluxes (figure 4-9b).

4.5 Summary of regimes

We classify dissolution into seven regimes. In the early diffusion regime, dissolution occurs
dominantly via diffusion without convective enhancement. In the fingering regime, dense,
COa-rich fluid sinks away from the source in fingers while relatively unsaturated fluid rises
upward, leading to an elevated dissolution flux that is approximately constant in time. In
the shutdown/fingering regime, the inner zone of the source region undergoes convective
shutdown, in which the dissolution rate slows due to the recirculation of COs-rich fluid
from the fingers back up to the source; the outer zone continues to exhibit fingering in a
return flow of nearly fresh water from the porous layer outside the source region. In the
shutdown /slumping and shutdown /Taylor slumping regimes, convective shutdown continues
in the inner zone, while dissolution in the outer zone is constrained by the rate at which
COg-rich fluid can migrate away from the source as a gravity current. This gravity current
exhibits a sharp boundary with the over-riding counter current in the shutdown/slumping
regime, and the dissolution flux in the outer zone decreases diffusively in time. However,
in the shutdown/Taylor slumping regime, the boundary becomes highly diffuse and the
dissolution flux in the outer zone decreases sub-diffusively in time. In the Taylor slumping
regime, dissolution at the edge continues to be limited by the migration of a diffuse gravity
current, but convective shutdown ceases in the inner zone due to nearly complete saturation
of the layer. Finally, in the late diffusion regime, dissolution occurs via lateral diffusion
though the porous layer with negligible convection.

All of the regimes can be organized into the phase diagram in figure 4-10. This diagram
shows that the occurrence of the regimes depends on the Rayleigh number. For the highest
Rayleigh numbers (Ra 2 2000), all regimes occur: dissolution begins in the early diffusion
regime, then transitions through the fingering regime, the three regimes with convective
shutdown, the Taylor slumping regime, and finally the late diffusion regime. For smaller
Rayleigh numbers, fewer regimes occur as convection becomes increasingly less important
relative to diffusion. For the smallest Rayleigh numbers (Ra < 55), none of the regimes

with convective enhancement occur: dissolution begins in the early diffusion regime and
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Figure 4-10: Phase diagram of the dissolution regimes. Tracing a vertical line through the diagram
illustrates the regimes that occur for a particular Rayleigh number. The gray region in the center
represents conditions for which we did not model dissolution. The sharp angle on the border between
the Taylor slumping (Ts) and shutdown/Tayor slumping (sT) regimes occurs at Ra = 133, the
leftmost extent of the fingering regime (f), due to uncertainty about the validity of the convective
shutdown mechanism for lower Rayleigh numbers.

transitions directly to the late diffusion regime.

4.6 Application

Since all the models have been derived for an idealized system, their applicability to real
geologic traps is uncertain. While our system is 2D, rectilinear, perfectly horizontal, and
homogeneous, real geologic traps typically exhibit complex 3D geometries and heterogeneity
at a variety of scales due to features such as lenses and layers of fine-grained rock. In
addition, the length of the COs-brine interface in a real trap continually decreases as the
COg dissolves, whereas the interface length in our system is constant (figure 4-1). Due to
the large number of differences and their complexity, we can not at this stage rigorously
evaluate the accuracy of our models in real traps or determine whether they provide upper
or lower bounds on the dissolution rates. Some features of real traps, such as slope and
natural groundwater flow, will likely lead to higher dissolution rates in practice, but the
effect of other features such as heterogeneity is more difficult to predict. Consequently, we
emphasize that the main contribution of the study is, strictly speaking, the elucidation of
how dissolution is affected by the finite COg-brine interface that exists during storage in

geologic traps.
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trap type thickness H [m| permeability & [mD] Ra

thick, high perm. 200 1000 2 x 10°
thin, high perm. 20 1000 2 x 10*
thick, low perm. 200 10 2 x 103
thin, low perm. 20 10 2 x 10?

Table 4.1: We apply the dissolution models to four types of simplified geologic traps.

While our models are based on several assumptions, applying them to real geologic traps
can be useful. Since the models are all analytical, they can quickly provide rough estimates
of the dissolution rates that can be expected in practice, and can help constrain the time
required to completely dissolve a volume of injected COy. While highly uncertain, these
estimates are useful because there are currently several sequestration projects worldwide
either injecting or planning to inject COq into structural and stratigraphic traps, but there
are limited techniques available to quickly predict dissolution rates over the lifetime of the
project. While large simulations incorporating site-specific geometry and geology play an
important role in quantifying these rates, they are time-consuming to develop and the infor-
mation they provide is also highly uncertain due to uncertainty in the subsurface properties.
In addition, uncertainty arises from the inability of conventional simulations to resolve the
small length scales associated with the fingering instability, which plays a key role in the

dissolution process.

With their limitations in mind, we apply the models to a few simplified geologic traps.
The traps are characterized by six dimensional parameters: the layer thickness, H; the width
of the COg-brine interface, W; the length of the trap in the g-direction, L (see figure 4-1);
the COq diffusivity, D; the saturated CO2 concentration, cg; and the buoyancy velocity,
V = Apgk/ne. We set the parameters to represent a range of conditions that may be
encountered in the subsurface [150, 113]. While all of these parameters exhibit variability,
for simplicity we set most of them to fixed values: L = 40 km, D = 1 x 1072 m?/s,
Ap =10 kg/m3, 4 = 6 mPa s, ¢ = 0.15, and ¢ = 50 kg/m>. For the layer thickness and
permeability, two of the most highly variable parameters, we consider low and high values:
for the layer thickness, we consider H = 20 m and H = 200 m, and for the permeability,
we consider k = 10 mD and k = 1000 mD (1 mD a 107!% m?2). These permeabilities lead
to two buoyancy velocities: 0.3 m/yr and 30 m/yr, respectively. Combining the buoyancy

velocities and layer thicknesses yields the four simple traps shown in table 4.1. For each
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trap, we consider two values for the width of the COs-brine interface: W = 5 km and

W =15 km.

While the traps are idealizations, they reflect properties from real sequestration projects.
The thin, low-permeability trap displays similarities to the upper zones in the Nagaoka
project (H ~ 10 m, k ~ 10 mD) [117], and the B-sandstone in the Tensleep Formation
in the Teapot Dome (H =~ 30 m, k ~ 30 mD) [28]. The thin, high-permeability trap
displays similarities to the Naylor Field in the CO2CRC Otway Project (H ~ 25 m, k ~
700 mD) [156], and the thick, low-permeability trap exhibits properties similar to the Mt.
Simon Sandstone in the Cincinnatti Arch (H ~ 100 m, £ ~ 10 — 200 mD) [113]. The
thick, high-permeability trap has properties similar to the Utsira Formation in the Sleipner
Project (H =~ 250 m, k =~ 5000 mD), which is not a structural or stratigraphic trap, but is

often used to contextualize results of CO2 dissolution models [123, 68, 105].

For each idealized trap, we calculate the dissolution flux over ten million years. For
most of the traps, the models completely specify the behavior. However, for the thin, low-
permeability trap (Ra = 200), there is a period of time for which we did not develop models
(see figure 4-10). For these times, we approximate the dissolution flux with a straight line
in log space that connects the models we do have; this approximation is a power law in

linear space.

The results show a few similarities between the traps, but several differences. The traps
are similar in that they all exhibit monotonic decreases in the dissolution flux: the flux first
decreases diffusively in the early diffusion regime, becomes constant during the fingering
regime, declines sharply in the regimes with convective shutdown, and then decreases more
slowly but still sub-diffusively during the Taylor slumping regime (figure 4-11a). However,
the detailed trajectories of the fluxes are very different among the traps, with the durations
of the different regimes and the magnitude of the fluxes during those regimes varying by
orders of magnitude (figure 4-11b). For example, in the high-permeability traps, fingering
occurs after about 20 days and the dissolution flux is about 30 kton/km?/yr (all tons
are metric tons), but in the low-permeability traps fingering occurs after about 600 years
and the flux is roughly 300 ton/km?/yr. The time at which the regimes with convective
shutdown and gravity currents occur is different for each trap: it ranges from 10 years in
the thin, high-permeability trap to about 10,000 years in the thick, low-permeability trap.

The magnitude of the fluxes during these regimes also vary widely among the traps.
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Figure 4-11: We calculate the evolution of the dissolution flux in four idealized geologic traps
characterized in table 4.1. The short dashed line on the purple curve marks the time period we
did not explicitly model, but that we approximate. The steep drop in the purple curve is due to
the fact that the model for the Taylor slumping regime (Ts) represents a lower bound on the flux.
a. The fluxes in each trap exhibit the same general trend: a monotonic decrease, with a period of
constant flux during the fingering regime (f). In addition, the wide traps (dashed; W = 15 km)
exhibit lower fluxes at late times compared to the narrow traps (solid; W = 5 km). However, the
detailed trajectories for each trap exhibit several differences, such as orders of magnitude variation
in the transition times between the regimes (black circles) and the magnitude of the flux during
the regimes. b. These discrepancies are highlighted by comparing the trajectories on the same plot
(W =5 km).
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Figure 4-12: For each idealized trap, we integrate the dissolution flux to calculate the dissolved
mass of COy vs. time (solid: W = 5 km; dashed: W = 15 km). The high-permeability traps (red,
green) dissolve more CO4 at short times compared to the low-permeability traps (blue, purple). At
late time, however, the quantity of dissolved COy depends on the trap thickness: the thick traps
(red, blue) ultimately dissolve more than the thin traps (green, purple). In all traps, large interface
widths (large Ws) lead to more dissolved COs for all times we consider (we only show one example
for clarity). Comparison to figure 4-11 shows the opposite effect on the flux.

By integrating the dissolution fluxes, we calculate the cumulative mass of COg2 dissolved
over time in each trap (figure 4-12). In practice, this quantity is of course constrained
by the storage capacity of the trap, but in our idealized model the storage capacity is
undetermined because the trap geometry is not fully specified. We find that at early times,
the high-permeability traps dissolve more COs than the low-permeability traps due to both
the shorter onset time for the fingering regime (t; ~ D/V?) and the larger magnitude of
the flux during the regime (f; = 0.017¢;V). These traps dissolve hundreds of megatons of
CO, over tens of years, whereas the low-permeability traps barely exceed 10 megatons. At
late times, the dissolved mass of CO2 depends on both the permeability and trap thickness,
since the thickness impacts the end of fingering and the subsequent regimes. The thin
traps nearly plateau at a little over 100 megatons of COs, while the thick traps reach over
1 billion tons—about half the annual emissions of coal- and gas-fired power plants in the
US [158]. In all traps, the amount of dissolved COq increases after the end of fingering,
though this behavior is negligible in the thin, low-permeability trap and is most pronounced
in the thick, high-permeability trap.

While the width of the COs-brine interface in our models is constant, the results illus-
trate that this parameter has a complex effect on dissolution. For the large interface width
(W = 15 km), the mean dissolution flux is always lower at late times than for the small

width (W =5 km) (figure 4-11a). This is due to the fact that, for small W, the relatively
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large dissolution rates in the outer zone have a stronger impact on the mean behavior. The
results for the cumulative CO» dissolution, however, exhibit the opposite trend: in all of the
traps, the larger interface width leads to the most dissolution for all times up to 10 million
years (figure 4-12). This indicates that increased surface area over which dissolution occurs
at early times is more important than the increased dissolution fluxes at the edge at late
times. In an actual geologic trap in which the interface width continually decreases, both
the early-time advantage of large surface areas and the late time advantage of relatively

large edge-zones will likely exist.

4.7 Discussion and conclusion

We find that CO5 dissolution in a geologic trap varies both spatially and temporally. In
general, the CO9 source region exhibits at least two zones of different behavior: an outer
zone adjacent to the edge of the source, and an inner zone far away from the edge. In
the inner zone, the dissolution mechanisms are nearly identical to those observed in closed
systems. Dissolution first occurs via vertical diffusion without convective enhancement,
then via fingering, and then via convective shutdown. In the outer zone, however, the
mechanisms are strongly impacted by the porous layer outside the source region, which
continues to supply relatively unsaturated water long after the inner zone becomes highly
saturated. During the fingering and shutdown/fingering regimes, this influx of unsaturated
water is approximately constant in time, and as a result, the dissolution flux near the
edge is also constant. During the shutdown/slumping regime, the influx of water and
dissolution flux decrease diffusively with time due to the migration of dense, COs-rich flow
away from the source as a gravity current. During the shutdown/Taylor-slumping and
Taylor slumping regimes, the influx of water and dissolution flux decrease sub-diffusively in
time due to diffusive mixing between the dense gravity current and the low-concentration
counter-current. At the latest times, convection becomes negligible relative to diffusion and
the dissolution flux becomes limited by lateral diffusion though the porous layer.
Applying the regime models to several representative geologic traps informs the rela-
tive importance of the different regimes and provides rough estimates of how much CO,
may be dissolved in practice. In general, we find that the onset times of the regimes and

the magnitudes of the dissolution flux depends strongly on the reservoir properties. This
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result indicates that there is no typical dissolution behavior and suggests that accurately
quantifying dissolution requires a site-specific approach. In addition, it encourages the use
of dissolution models in the site-selection process, since a well-chosen site could potentially

dissolve hundreds of megatons of CO5 within tens of years.
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