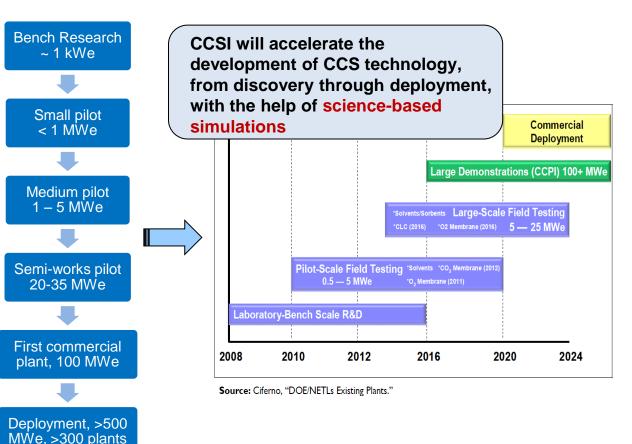


Risk-Based Cost Methods

Dave Engel Pacific Northwest National Laboratory Richland, WA, USA

IEA CCS Cost Workshop Paris, France November 6-7, 2013

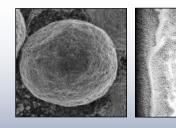


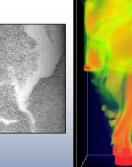
Carbon Capture Challenge

- The traditional pathway from discovery to commercialization of energy technologies is long¹, i.e., ~ 20-30 years.
- Technology innovation increases the cost growth, schedule slippage, and the probability of operational problems.²
- President's plan³ requires that barriers to the widespread, safe, and cost-effective deployment of CCS be overcome within 10 years.
- To help realize the President's objectives, new approaches are needed for taking concepts from lab to power plant, <u>quickly</u>, at low cost and with minimal risk.

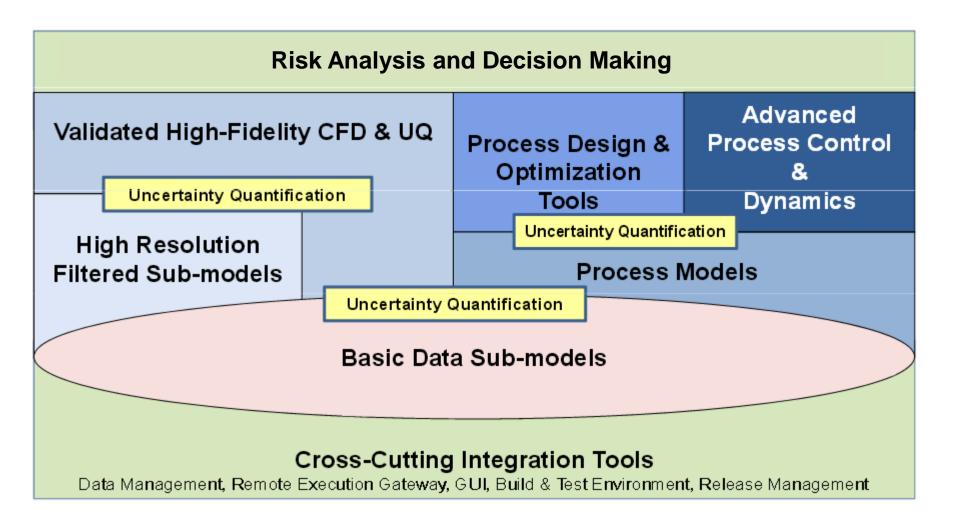
1. International Energy Agency Report: Experience Curves for Energy Technology Policy," 2000

- 2. RAND Report: "Understanding the Outcomes of Mega-Projects," 1988;
- 3. http://www.whitehouse.gov/the-press-office/presidentialmemorandum-a-comprehensive-federalstrategy-carbon-capture-and-storage





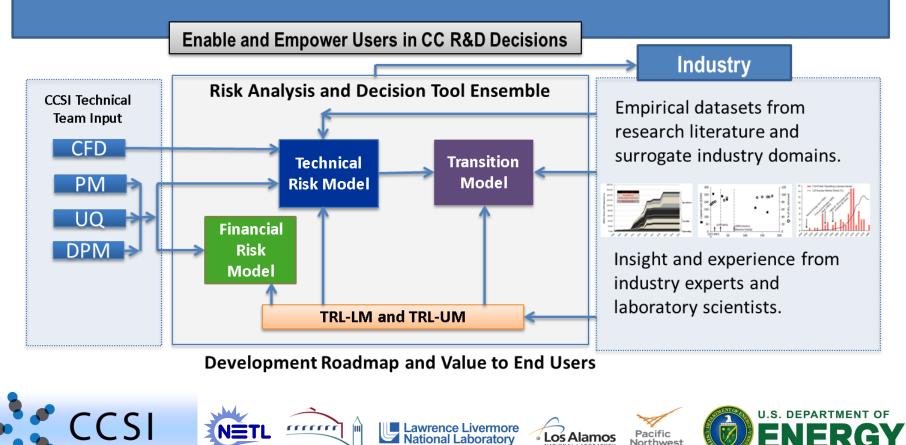
For Accelerating Technology Development


Identify promising concepts Reduce the time for design & troubleshooting

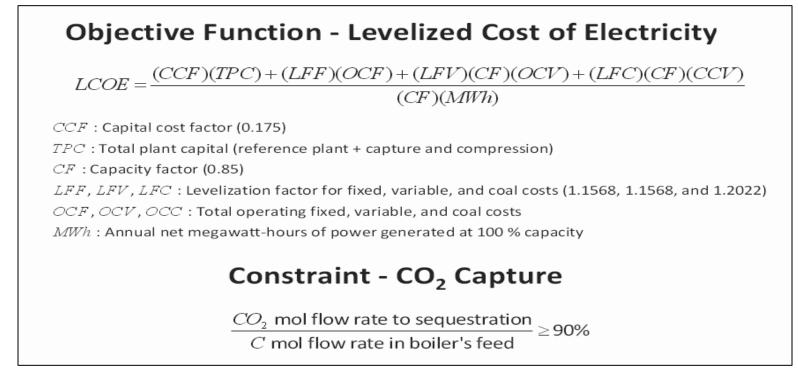
Quantify the technical risk, to enable reaching larger scales, earlier

Stabilize the cost during commercial deployment

Advanced Computational Tools to Accelerate Next Generation Technology Development



Risk Analysis Role in Facilitating Acceleration

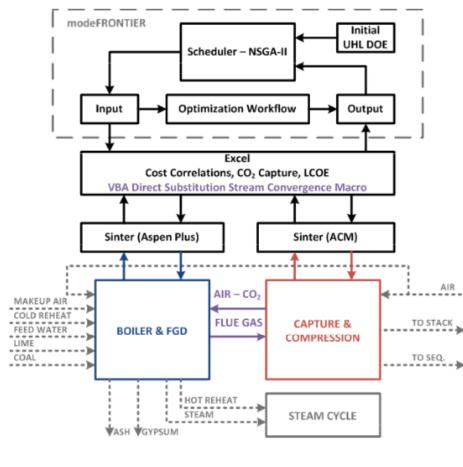

Risk Analysis Role in Facilitating Acceleration

Enable industry users to incorporate their current state of knowledge, resources, and capabilities into the Risk Analysis and Decision Making Tool Ensemble to make sound judgment about R&D directions—moving along the TRL scales or skipping scales—with confidence and resolve, without comprising system reliability, maintainability, and supportability objectives.

Process Modeling and Optimization Cost Model

Cost is calculated using an optimized steady-state system process model (Aspen plus) as shown below:

Cost is then passed to the Risk Analysis models for use in the Financial Risk Model



Process Modeling and Optimization Cost Model

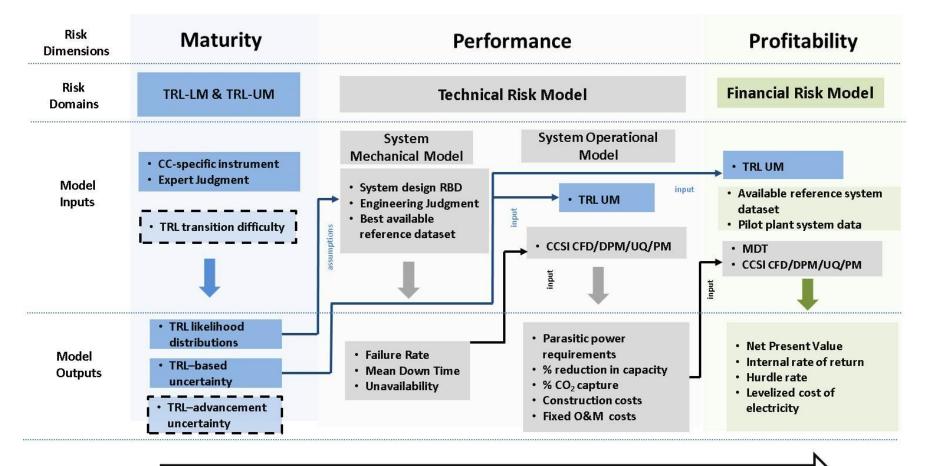
Modular Framework Retrofit to a 550 MW Subcrital PC Plant

Carbon Capture Simulation Initiative

.....

BERKELEY LAB

Sample Results


	Tunical	Base Case	2 x Q	4x Q	2 x α	4χα	4x Q,4x α
CO. Permeance (CPUI)	Typical 10-10000†	1000 [‡]	2000	4x Q 4000	2x a 1000	4x α 1000	4x Q,4x a 4000
CO ₂ Permeance (GPU)	10-10000' N/A	20	2000	20	40	80	4000 80
Ar Selectivity	N/A <1	0.5	0.5	0.5	40	0.5	0.5
H ₂ O Selectivity	<1 4-150⁺	0.3 50‡	50	50	100	200	200
N ₂ Selectivity	4-130 N/A	20	20	20	40	80	80
O ₂ Selectivity LCOE (\$/MWh)	N/A	136	131	130	130	126	116
LCOE (\$/ WWN) LCOE inc Reference Plant (%)	N/A	113	105	103	103	97	81
		OE Cost			100	5,	
140 120 (100 80 0 0 0					 Referen Coal Variable Fixed O 	ession Equipr Ice Plant Cap	
Base Case	2x Q 4	x Q 2x o	4xα	4x Q, 4x	α		
Base Case 140 135 135 130 125 120 120	2x Q 4	x Q 2x o	1. 1: 1: 1: 1: 1: 1: 1:	40 35 - 30 - 25 - 20 -	α •		,
Base Case 140 135 135 130 125 120 115		•	1. 11 11 11 12 12 11 11 1	40 35 - 30 - 25 - 20 - 15 -	• •	150 20	0 250
Base Case 140 135 135 130 125 120 115 0 1	2xQ 4	•	1. 1: 1: 1: 1: 1: 1: 1:	40 35 - 30 - 25 - 20 - 15 -	α 50 100 N ₂ Sele	150 20 ectivity	0 250
Base Case 140 135 135 130 125 120 115 0 1	2 3	• 4 :PU/10 ³)	1. 1. 1: 1: 1: 1: 1: 5 5	40 35 - 30 - 25 - 20 - 15 -	50 100		
Base Case 140 135 130 125 120 115 0 1 CO ₂ Pe	2 3 rmeance (G Base Ca	• 4 SPU/10 ³)	ו. (1, 1, 1) 11 רבספ (אושאווי) 11 רבספ (אושאווי) 1 5	40 35 - 25 - 20 - 15 0	50 100 N ₂ Sele	ectivity	
Base Case 140 135 130 125 120 115 0 1 CO ₂ Pe Result (units)	2 3 rmeance (G Base Ca	• 4 3PU/10 ³) ase 2x	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	40	50 100 N ₂ Sele 2x α	ectivity 4x α	4x Q,4x
Base Case 140 135 130 125 120 115 0 1 CO ₂ Pe Result (units) Relative vol. increase of FG (%	2 3 rmeance (G Base C) 16	• 4 :PU/10 ³) ase 2x 18	1. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	40 35 25 20 15 0 4x Q 21	50 100 N ₂ Sele 2x α 12	ectivity 4x α 11	4x Q,4x 13
Base Case 140 135 130 125 120 115 0 1 CO ₂ Pe Result (units) Relative vol. increase of FG (% Makeup air (m³/hr/10³)	2 3 rmeance (G Base C) 16 83	• 4 :PU/10 ³) ase 2x 18 11	1. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	40 35 20 20 15 0 4x Q 21 163	50 100 N ₂ Sele 2x α 12 52	ectivity 4x α 11 36	4x Q,4x 13 68
Base Case 140 135 130 125 120 115 0 1 CO ₂ Pe Result (units) Relative vol. increase of FG (% Makeup air (m ³ /hr/10 ³) Oxygen depletion (%)	2 3 rmeance (G Base C) 16 83 2.8	4 PU/10³) ase 2x 18 11 4.3 17	1. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	40 35 20 20 15 0 4x Q 21 163 6.9	50 100 N ₂ Sele 2x α 12 52 1.3	ectivity 4x α 11 36 0.7	4x Q,4x 13 68 2.2
Base Case 140 135 130 125 120 120 115 0 1 CO ₂ Pe Result (units) Relative vol. increase of FG (% Makeup air (m ³ /hr/10 ³) Oxygen depletion (%) FG CO ₂ concentration (mol%)	2 3 rmeance (G Base C) 16 83 2.8 17	4 PU/10³) ase 2x 18 11 4.3 17	1. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	40 35 20 20 4x Q 21 163 6.9 17	50 100 N ₂ Sele 2x α 12 52 1.3 18	ectivity 4x α 11 36 0.7 18	4x Q,4x 13 68 2.2 18
Base Case 140 135 130 125 120 120 115 0 1 CO ₂ Pe Result (units) Relative vol. increase of FG (% Makeup air (m ³ /hr/10 ³) Oxygen depletion (%) FG CO ₂ concentration (mol%) Membrane area (m ² /10 ⁶)	2 3 rmeance (G Base Ca) 16 83 2.8 17 1.13	4 iPU/10³) ase 2x 18 11 4.: 17 0.8	1. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	40 35 20 20 4x Q 21 163 6.9 17 0.64	50 100 N ₂ Sele 2x α 12 52 1.3 18 1.14	ectivity 4x α 11 36 0.7 18 1.16	4x Q,4x 13 68 2.2 18 0.75

Coupled CCSI Risk Analysis and Decision-Making Framework

Integrating Probabilistic Risk Analysis and Uncertainty Quantification cross Models

Financial Risk Model

Only numbers in BOLD blue are user selectable

			U	ncertain	ty Distribu	tion
Rate, Tax and Growth Assumptions	Value	Units	Min	Max	Average	Random
Utility PPA per MWh	60	\$ per MWh			100 22	-
PPA Inflation Rate	1.5%	Percent.				
Federal tax rate	35%	Percent				
State tax rate	7.0%	Percent				
Discount rate	7.0%	Percent				
Tax life of plant	30	Years				
Federal PTC	0.0%	Percent				
Federal ITC	30.0%	Percent				
State ITC	7.0%	Percent				
State PTC multiplier	1	Units	1.1			

4in

Max Average Random

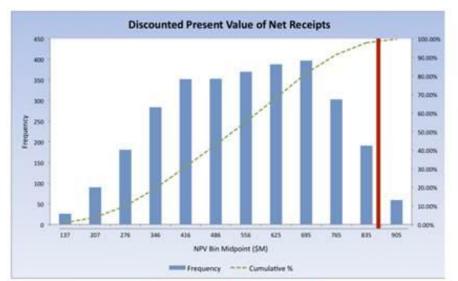
1

Random

90.0%

Electric v. Thermal Power Production	Value	Units	
Electric Power Output	650	MWe	
Thermal Power Output	1759	MWth	

Replacement Power	Value	Units	Min	Max	Average	Random
CCS Parasitic Power Requirements	210	NWe	160	260	210	21
CCS Parasitic Power Recirculating Fraction	0.3231	141		2.000	11	
Plant Average Hours of Operation per Day	20	hours/day				
Plant Average Days of Operation per Year	350	days/year				
Plant Capacity Factor without CCS	0.799					
Drop in Duty Factor due to CCS	5.0%	percent	0%	10%	5%	5.1
Duty Factor with CCS	0.759	10 al 1		-	10	10
Replacement Power Required	236	MWe				
Unit Cost of Replacement Power	60.0	\$/MWe	-			


Plant Construction Expenses	Value	Units	Min Max Average Rando
Total Capital Costs	2	\$B	
Construction Period	2	Years	
			AL AN ALL AND AREA THE ALL AND ALL

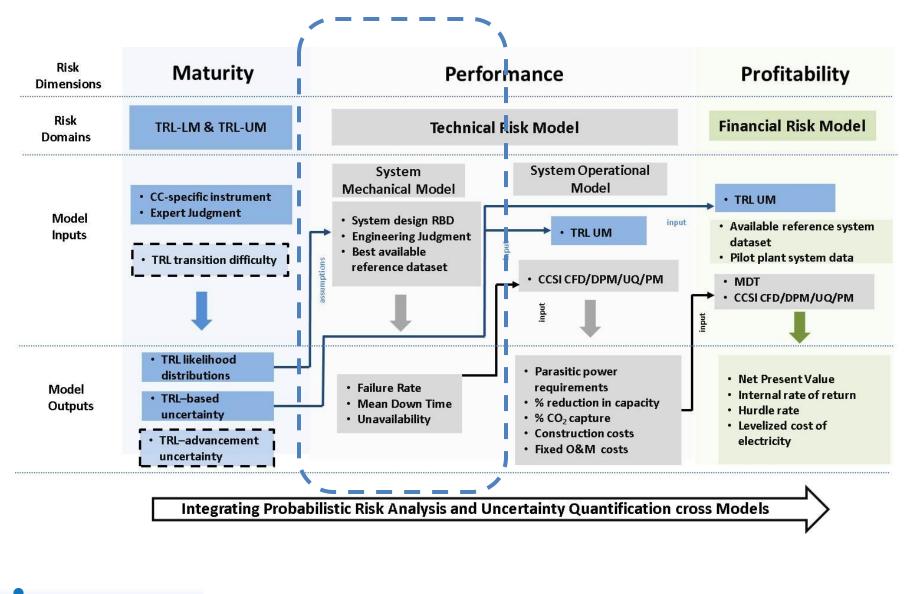
Operating Expenses	Value	Units	Min	Max	Average	
Operating Expense Inflation Rate	1.5%	Percent				
Carbon Capture Percentage	90.0%	Percent	85.0%	95.0%	90.0%	Г
Carbon Tax	25	\$ per ton			45 C	
Fixed O&M Base Year Cost	23	SM				
Variable OBM Cost per mWh	4.25	\$ per MWh				

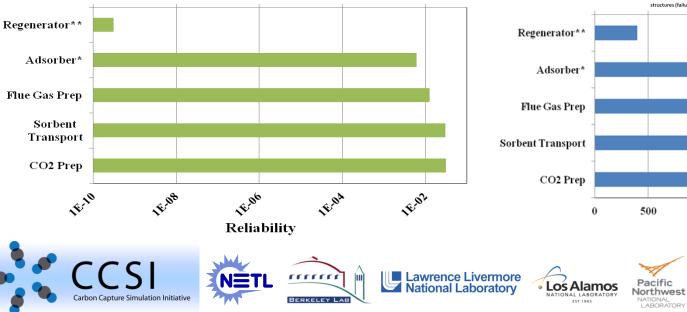
Carbon Capture Retrofit	Value	Units	Min	Max	Average	Random
CCS Construction Costs	1.600	58	0.5	3.0	1.6	1.7
CCS Fixed O&M Costs	50	\$M/year	25.0	100.0	50.0	62.5
Variable O&M Costs	0.0087	SperkW			W	17
Construction Period	2	years				

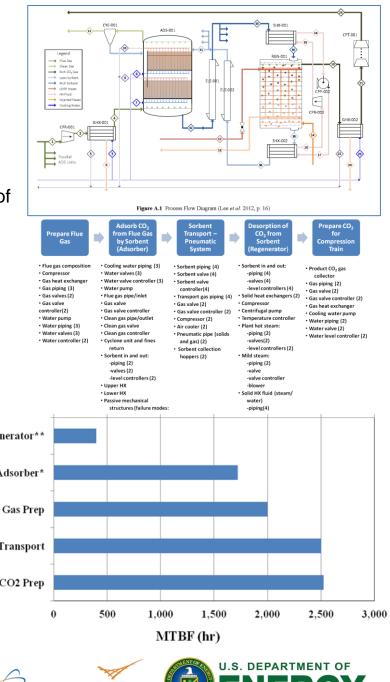
Financial Risk Model

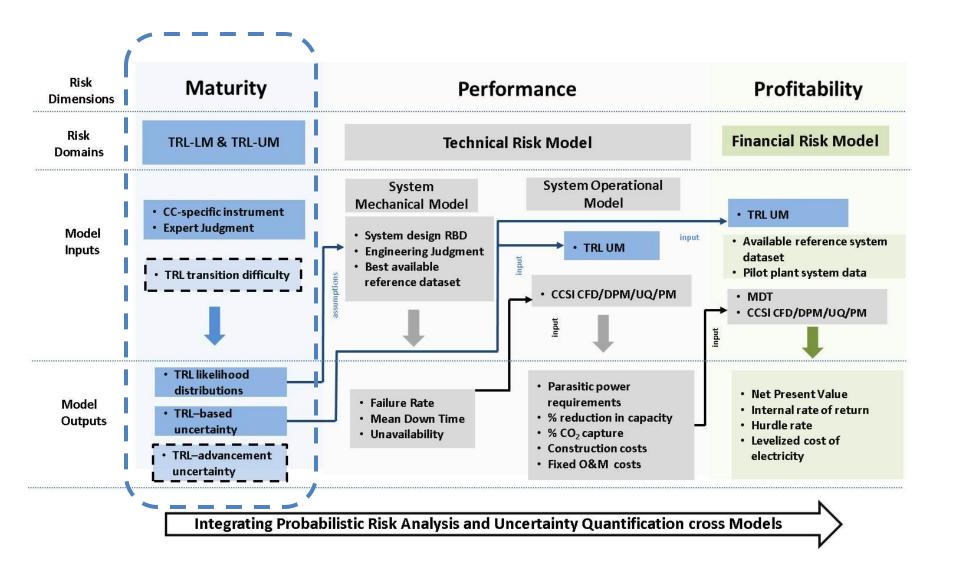
	No Capture	Carbon Capture	Difference
Power Generation for Sale (MW)	650	413	-36.5%
Total Revenue - NPV (5)	3,447,250,773	3,447,250,773	0.0%
Total Operating Expenses - NPV (5)	449,584,381	1,868,708,398	315.7%
Depreciation Expense - NPV (5)	796,116,764	1,125,018,224	41.3%
Income Taxes - NPV (5)	962,191,240	363,802,699	-62.2%
Tax Credits - NPV (S)	668,966,722	987,281,376	47.6%
Carbon Taxes - NPV (5)	1,040,249,355	553,601,631	-46.8%
Discounted Present Value of Net Receipts (5)	868,075,754	523,401,198	-39.7%

Uncertain CCS Parameter	Rank	Relative Importance	
CCS Parasitic Power Requirements	1	690	
Drop in Duty Factor due to CCS	4	86	
Carbon Capture Percentage	3	366	(
CCS Construction Cests	5	1	Update Ranking
CCS Fixed O&M Costs	2	627	








Technical Risk System Mechanical Model

- Application based on a prototype hybrid solid sorbent system
- A series of RBD describes the system as interconnected functional blocks; failure of any block prevents the operation of the system.
- The estimation of failure rate and MDT of each component /function block allows a calculation of MTBF, MDT, and U for any components, blocks, combinations of blocks, or for the whole system.

$$U_s = \frac{\sum_i \lambda_i M D T_i}{1 + \sum_i \lambda_i M D T_i}$$

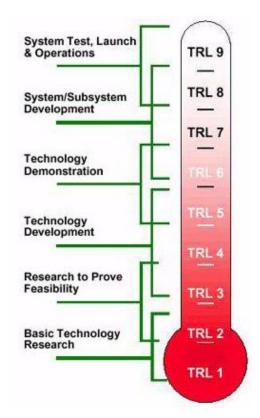
Maturity Modeling: Technology Readiness Level

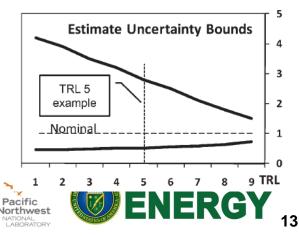
Lawrence Livermore National Laboratory

.os Alamos

EST 1943

NAL LABORATO

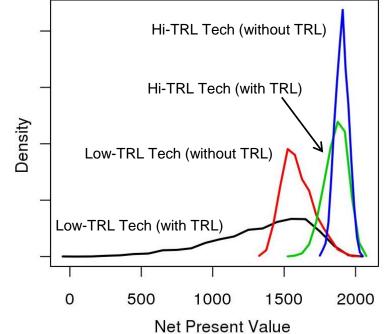

Major Objectives of Risk Analysis and Decision Making


- 1. Formulate risk acceptance metrics and processes relevant to capital investors and other stakeholders that can be integrated into the simulation framework (CCSI Objective 3)
- 2. Provide connectivity between plant-cost scaling factors for each technology option and economic market influences such as finite resources of specialized labor and materials (CCSI Objective 1)
- 3. Combine technical risk and financial risk factors into an integrated decision analysis framework that naturally handles propagation of uncertainties into a variety of decision metrics (CCSI Objective 1 & 3)

Technology Readiness Level (TRL)

Measure used to assess the maturity of evolving technologies prior to incorporating the technology into a system/subsystem (Mankins, 1995, NASA). The qualitative TRL can be used to roughly estimate the uncertainty bounds in a comparison of technologies (Mathews, 2010). This methodology will be used to help quantify technical risks and used to accomplish Risk Analysis Objectives 2 and 3.

- Yard stick to measure accelerated development against traditional development
- Introduce uncertainty into framework of technical risk model



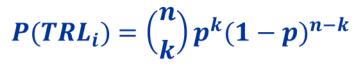
Technology Maturity Models

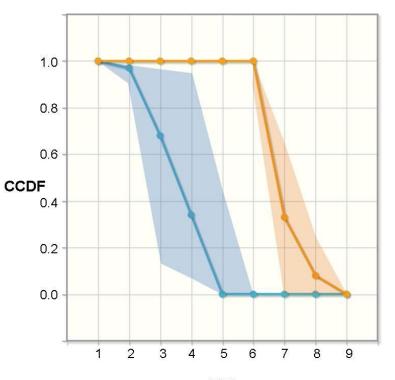
Significance

- Technology maturity modeling is the foundational step in CCSI Probabilistic Risk Analysis
- Without including the maturity uncertainties, models under-estimate uncertainties and possibly overestimate performance and profitability estimates, especially at low TRLs

Methods

- TRL input is entered into the GUI of the expert elicitation system
- The model calculates the likelihood of the technology being at a certain maturity level
- Uncertainty factor distributions (ranges) are then modeled for each maturity level and used in the uncertainty analysis to simulate uncertainty factors to be used in the modeling of the technical and financial risks.



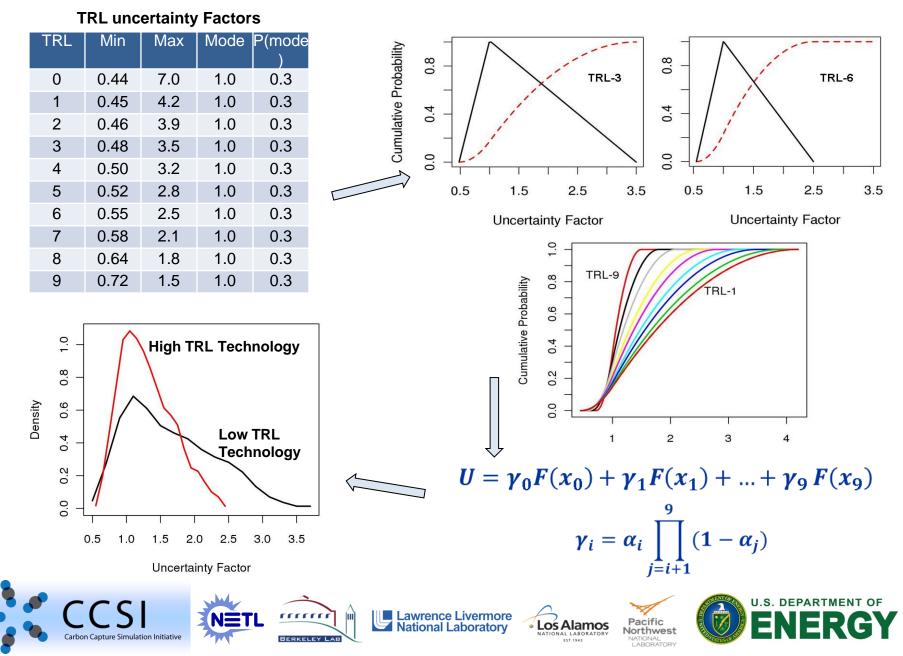

TRL Likelihood Model

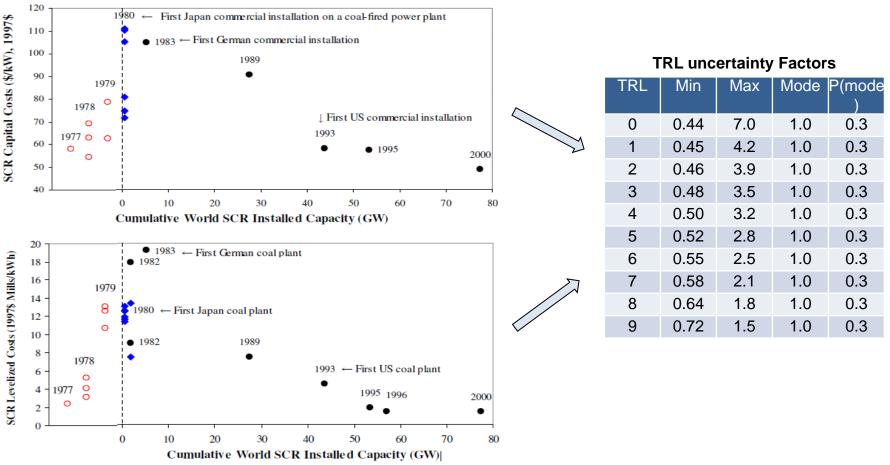
	Technology Readiness Levels					
9	Commercial operation in relevant environment					
8	Commercial demonstration, full scale deployment in final form	650 MW				
7	System prototype in an operational environment	>100 MW				
6	Fully integrated pilot (prototype) tested in a relevant environment	10 - 50 MW				
5	Component validation in relevant environment (coal plant)	1 MW				
4	Component validation tests in laboratory environment	1 KW				
3	Analytical and experimental critical function proof-of-concept					
2	Formulation of application					
1	Basic principals					

TRL 3	: Has analytical and experimental proof-of-concept been demonstrated in a laboratory environment? 🔂	
1.	Have experiments validated the predicted capability of technology components?	● Yes No
2.	Have analytical studies verified performance predictions and produced algorithms?	● Yes No
3.	Are the technology or system performance metrics established?	● Yes No
4.	Can science relevant to developing the technology be modeled or simulated?	● Yes No
5.	Have technology or system performance characteristics been confirmed and documented with representative data sets?	● Yes No
6.	Do experiments or modeling and simulation (M&S) validate performance predictions of technology capability?	● Yes No
7.	Do the results of technical application experiments verify the feasibility of such applications?	● Yes No
8.	Does published research provide evidence for successful integration of technology and system components?	● Yes No
9.	Have design techniques been identified and/or developed?	● Yes No
10.	Have scaling studies been initiated?	● Yes No
11.	Has analysis of alternatives been completed?	● Yes No
12.	Have programmatic risks been identified and mitigation strategies been documented?	Yes No

Carbon Capture

TRL


Lawrence Livermore National Laboratory


EST.1943

TRL Uncertainty Model

(Cost) Uncertainty Factor Distributions

Capital and levelized costs of a SCR system for a standard (500 MWe, burning medium sulfur coal, 80% NOx removal) new coal-fired power plant. SCR: selective catalytic reduction systems at standard U.S. coal-fired utility plants, used for the removal of NO_X.

- · Studies based on low-sulfur coal plant, which requires lower SCR capital cost
- · Studies evaluated prior to any commercial SCR installation on a coal-fired utility plant

Yeh, S, E Rubin, et al. Uncertainties in Technology Experience Curves for Integrated Assessment Models. *Environmental Science & Technology*, Vol. 43, No. 18, pp. 6907-6914, 2009.

Implications for Cost Modeling

- Costs are calculated/simulated using a steady-state optimal system process model. The simulations incorporate parameter (aleatory) uncertainties (call these known unknowns)
- This modeling ignores uncertainties due to lack of knowledge caused by the lack of technical maturity (epistemic uncertainties or unknown unknowns)
- Our risk analysis models incorporate the TRL uncertainty modeling to address the epistemic uncertainties and the mechanical risk model to address the reliability (maintenance) of the system.
- Without incorporating these models, the results under-estimate the uncertainties of the system and possibly over-estimate the performance provides more realistic comparison of technologies and identifies large sensitive areas (processes and parameters) to help accelerate the technology development

Future Development

- Transition model to identify potential TRL up-scaling pathways and challenges
- Incorporate likelihood model uncertainties
- Develop multi-process maturity modeling capability (e.g., adsorber, regenerator, and transport)
- Operationalize the System Flow Diagram for CCSI Decision Making Framework

Lawrence Livermore

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

For further information contact Dave Engel, PNNL dave.engel@pnnl.gov

