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Abstract

Lack of climate policy and CO2 markets along with a global economic slowdown suggest that we need to
rethink our approach to demonstrating CCS at a commercial scale. Austerity measures make it likely that 
public funding will be tight in coming years, and there is a striking need to ensure that limited funds are
spent optimally. Quantitative tools exist for aiding decision making under uncertainty, yet few of them 
have been applied to build a model that can help answer the question of what is the optimal allocation of a
given amount of money across a portfolio of demonstration projects that maximizes learning about CCS.
Developing such a model is the goal of this paper and we employ the model to assess the proper role of 
Enhanced Oil Recovery ((EOR) in a CCS demonstration portfolio. We find that if we want to maximize
learning, a CCUS-only (CCS + EOR) approach to developing CCS as a mitigation technology would only 
be advisable if there was little uncertainty in non-EOR storage. As we believe that this condition is
unlikely to be true, we suggest that U.S. policy makers should be particularly cautious in relying on a
CCUS-only approach to CCS development. Nonetheless, we also find that a portfolio consisting of a mix
of CCS and CCUS projects can be an effective strategy in a number of situations, notably if EOR can 
teach us important lessons about non-EOR storage.
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1. Introduction

Rising CO2 concentrations in the atmosphere could potentially have dramatic consequences for the
[1]. With its promise of nearly CO2-free electricity 

from fossil fuel sources, carbon capture and storage (CCS) has been viewed as an important option to
consider for reducing future emissions. Consequently, over the past decade many governments laid out 
aggressive roadmaps for CCS development and deployment. Yet no global emissions reduction 
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agreement has been signed, and the failure of passing a cap and trade bill through the U.S. Congress has 
made it highly unlikely that the primary driver for CCS projects, climate policy, will be in place in the 
U.S. this decade. Consequently there will be no climate markets for CO2, and coupled with a global 
economic slowdown this new reality suggests that we need to rethink our approach to demonstrating CCS 
at a commercial scale. 

Because the long-run cost and performance of CCS is uncertain, there is significant value in exploring the 
potential of this mitigation technology, even despite the worsened outlook for climate policy. The next 
several decades provide a valuable opportunity for learning. If public policy in the future calls for large-
scale emission reductions, it is important to advance the state of readiness for CCS technologies and to 
determine what role they can play in a climate mitigation portfolio.  

Austerity measures in many developed countries will likely result in limited funds for large-scale 
demonstration projects, making it even more important to ensure that resources are strategically allocated 
to achieve the highest return. As governments generally invest in R&D and demonstration projects to gain 
knowledge, we make the assumption that policy-makers want to invest in a way that maximizes 
knowledge acquisition.  Knowledge is of course a vague term, and can include better physical 
understanding of reservoirs (e.g., regarding reservoir leakage), ways to reduce costs, developing new 
technologies, etc.  All this helps us reduce uncertainty as we determine the role of CCS in a future low-
carbon energy portfolio.  
uncertainty correlates to acquiring knowledge. As a first step we will simplify the knowledge acquisition 
problem by just modeling the uncertainty in cost, with cost being a proxy for a wide range of technical 
and economic issues. Policymakers will need to determine the optimal allocation of a given amount of 
money across a portfolio of demonstration projects that minimizes the uncertainty in the cost of CCS.   

Arguably this is a very complex problem, not least because we have no accurate way of determining the 
effect of any demonstration project on the acquisition of knowledge or the reduction of uncertainty. Using 
a number of simplifying assumptions we can nonetheless develop a quantitative optimization model of 
project selection under uncertainty.  Specifically, we apply a dynamic portfolio optimization framework 
with Bayesian learning to assess how different carbon capture projects reduce uncertainty about CCS as a 
mitigation technology. The focus of this paper is not to contribute to the state of the art of mathematical 
portfolio analysis, but rather applies the methods in an illustrative example to provide new insight about 
the future path of CCS policy in the U.S. and globally. 

The model will be used to answer a specific and timely question:  What is the appropriate role for CCUS 
in a CCS portfolio? With a large potential market for captured CO2, Enhanced Oil Recovery (EOR) has 
gained prominence in recent years with U.S. policy makers due to the lower cost of CCUS projects. Yet 
CCUS is not an end-goal in itself, and the assumption has been that experience with CCUS will spill over 
to CCS. We will use our optimization model to gain insight about whether CCUS is conducive to gaining 
knowledge about CCS, and if so, under what conditions? 
  
The structure of the paper is as follows.  In Section 2, we review the literature in two related areas, 
climate and energy economics, and operations research. In Section 3, we frame the decision problem 
studied, and describe the modeling methodology. The modeling results are presented in Section 4. Section 
5 concludes with a discussion of the insights for energy R&D policy.  
 

2. Background 
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This paper builds on two distinct areas of study in assessing the optimal path for CCS development: 
energy and climate economics, and operations research and dynamic portfolio optimization.   Economists 
have conducted numerous studies on the question of how to optimally spend public R&D funds to reduce 
the cost of future emission reductions; see Gillingham et al. (2008) [2] for a good overview of different 
approaches used to model technological change. One approach is to incorporate technological change in 
integrated general-equilibrium models, such as WITCH (Bosetti et al., 2011 [3]) and DICE (Nordhaus, 
2002 [4]). The integrated modeling approach captures the dynamics between R&D investments, the 
evolution of technologies, and how such changes affect the relative economics of one mitigation 
technology over another in meeting an emission reductions target. As pointed out by McJeon, et al., 
(2011) [5], a key challenge with many integrated assessment models is that they generally use 
representative scenarios for how one technology evolves, and thus do not consider the broad range of 
possible paths that a technology can take in response to a demonstration or R&D program. Webster et al. 
(2008) [6] explore this issue by applying Monte Carlo simulation, and McJeon, et al., (2011) [5] uses a 

assumptions of technical development. However, Monte Carlo approaches do not address decision under 
uncertainty, which is our focus here.  

The current literature on incorporating technological learning into a modeling framework generally 
distinguishes between learning-by-doing and learning-by-searching (R&D-based approaches). Learning-
by-
representation of endogenous learning (e.g., Popp, 2004 [6]; Bosetti et al., 2011 [3]). The concept of 
learning-by-doing, or learning rates (e.g., McDonald & Schrattenholzer, 2001 [8]; Rubin et al., 2004 [9]) 
focuses on reductions in technology cost that occur as a function of cumulative investment or cumulative 
production during the commercial phase of technology development. 

Recent R&D portfolio analysis, e.g., Ringuest et al. (2004) [10] has built upon the rich tradition of 
financial portfolio optimization going back to Markowitz (1959) [11] and Samuelson (1969) [12]. The 
classic decision criterion is the mean-variance analysis, by which the optimal portfolio either minimizes 
variance for a given mean return, or maximizes the mean return for a given variance (Chien, 2002) [13]. 
The literature on Bayesian portfolio analysis (e.g., Avramov & Zhou [14], 2010; Zellner & Chetty, 1965 
[15]) explicitly models how observations over time lead to revised beliefs about uncertainty.  

However, optimizing a project portfolio is fundamentally different from a financial portfolio 
optimization. As pointed out by Vilkkumaa et al. (2012) [16], decisions are not continuous (i.e., you 
cannot build a fraction of a CCS project), and markets do not determine their price or value. Some studies 
have adapted the traditional portfolio optimization framework to consider energy project R&D decisions.  
Chao et al. (1990) [17] use a two-stage model with discrete investment amounts to explore how to 
allocate initial exploratory R&D across several candidate energy technologies.  Guo (2012) [18] extends 
the portfolio selection framework to explicitly include the value of endogenous learning (i.e., learning that 
only occurs with investments and scales with the amount invested), and demonstrates the model with a 
two-technology decision problem over many stages.  

We adapt a multi-stage R&D investment portfolio optimization model to explore the optimal allocation 
across four types of CCS projects which result in differing amounts of learning (reduction in the 
uncertainty) about capture and sequestration. Our model, described in the next section, is closest to that of 
Guo (2012) [18], but is applied to a specific question within CCS technology development. 
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3. Methodology 

To explore the value of CCUS as a strategy for CCS technology development, we construct a stylized 
decision problem.  This simple example will enable us to highlight the trade-offs across a wide range of 
possible situations.  The biggest benefit of this exercise is not to generate a detailed allocation of R&D 
funds, but to help one better understand how to think about this problem and gain insights in making the 
allocation decisions. 
 
Consider a decision maker with a fixed budget every period that can be allocated over a number of CCS 
demonstration projects.  His goal is to reduce the uncertainty in project costs (our proxy for gaining 
knowledge).  Some projects cost more, but result in more useful information for reducing the uncertainty 
in CCS costs.  Also, the cost of each individual project is variable relative to the average cost, which 
reduces the information learned from a single project.  After observing the cost of the chosen projects, the 
decision-maker again chooses new projects to invest in for the next period, and the process repeats.   The 
decision problem in any period is how to allocate funding across project types in order to maximize the 
reduction in cost uncertainty by the final period. 
 
We want to predict the cost of one project ahead of time and our prediction relies on our understanding of 
the average cost of all projects. Yet the resulting cost estimate for a single project will be uncertain for 
two reasons. First there is uncertainty regarding the average cost due to a lack of knowledge and 
experience. In the model, 
from demonstration plants. Second, although we can use the average cost to predict the cost of individual 
projects by considering site-specific factors, all the heterogeneities of individual projects cannot be 
accounted for ahead of time. Individual project costs will therefore vary around the average, even if we 
have tried to account for project-specific heterogeneities. In the model this is referr
and it will persist even when we have enough knowledge to determine the average cost with confidence. 
For example, when building a refinery, you can factor site-specifics such as tax rate, land cost, labor cost 
etc. into the cost ahead of time. Yet even if there are decades of experience and data on the average cost, 
individual project costs can still be a bit lower or a bit higher than anticipated due to the variability that 
can be associated with the heterogeneities of specific projects.  
 
Below, we formalize the model of this decision problem, and describe the assumptions made for this 
illustration. 

3.1 Dynamic Programming Formulation 
 
We frame the decision problem and solve it using stochastic dynamic programming.  Dynamic 
programming (DP) provides a structure for solving multi-stage sequential decision problems under 
uncertainty.  Rather than solve the entire problem at once, which is generally prohibitively large, we 
decompose the problem and solve iteratively for the optimality conditions at every decision stage. 
 
To formalize the problem, we use a Bayesian approach to model the uncertainty and learning.  We 
assume that the cost of any CCS project is distributed normally as 
 
 C ~ N( , ) 
 



 Jan Eide et al.  /  Energy Procedia   37  ( 2013 )  7647 – 7667 7651

 
where  is the mean or average cost and  is the standard deviation, which represents the variability of 
projects.  Because the mean cost of CCS projects are uncertain, we represent that uncertainty as a 
probability distribution for the average cost , and assume that it is distributed as 
 
  ~ N(m, s) 
 
where m - s is the standard deviation, which 
represents our current uncertainty in the average cost of CCS projects. After each new CCS investment, 
the actual cost for that project will be observed, and updating m and s according to Bayes rule reduces the 
uncertainty in future CCS project costs. 
 
To capture the key features of the current debate over whether to invest in demonstration projects that 
capture carbon from high-purity sources and/or use the carbon for EOR, we further disaggregate the costs 
of each CCS project into the sum of two components: the cost of capture Cc and the cost of sequestration 
Cs.  
 C = Cc + Cs 
 
The uncertainties in the capture cost and the sequestration cost are represented separately, and each 
observed cost from an investment updates both uncertainties: 
 
 Cc ~ N( c, c),  c ~ N(mc, sc) 
 Cs ~ N( s, s),  s ~ N(ms, ss) 
 
We simplify the range of possible CCS demonstration projects into four possible types (Figure 1).  The 
carbon capture can occur within a high-purity industrial process or within an electricity generation 
facility.  The carbon can then be used for EOR, or sequestered in a non-EOR reservoir such as a saline 
aquifer.  The four possible project types are high-purity capture and EOR (HP-CCUS), high-purity 
capture with non-EOR sequestration (HP-CCS), power plant capture with EOR (CCUS), or power plant 
capture with non-EOR sequestration (CCS). However, if the ultimate goal is to use CCS for climate 
mitigation, then power generation capture and non-EOR storage will need to play major roles. We are 
therefore interested in reducing the uncertainty in this capture and storage method. We assume that the 
cost of capture from a high-purity source is less than capture in a power plant. 
 CHP< Cc, 
and the cost of storage for EOR is less than non-EOR storage 
 CEOR < Cs. 
 
 
 



7652   Jan Eide et al.  /  Energy Procedia   37  ( 2013 )  7647 – 7667 

 

 

Fig. 1: Carbon capture project types  

 
We now formalize the dynamic programming decision problem.   The decision-
minimize the uncertainty in CCS costs by the terminal period T: 
 
 min sT  
 
To simplify the example here, we assume that the decision-maker can only choose up to two projects in 
each period t: 
 
 at,1, at,2  {HP-CCUS, HP-CCS, CCUS, CCS} 
 
The state variable, which fully capture all relevant information about the evolution of the system up to 
period t, are the parameters that describe the cost uncertainties based on all projects observed up to this 
point.  For this problem, the state variable xt at period t is the vector: 
 
 xt = {mt,c, st,c, mt,s, st,s} 
 
The state transition equations describe how the state evolves as a function of the action chosen and the 
random variation that occurs.   When the next set of two projects is chosen, the capture and sequestration 
costs for each project are drawn randomly from the current probability distribution.  The observed costs 
of capture and sequestration,  and , from each project are then used to update the parameters 
according to: 
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To solve this problem using dynamic programming, we use backward induction to recursively solve the 
Bellman value function: 
 

 

 
For the example shown below, we assume a finite horizon problem with two periods, 
 t = {1,2}, 
each representing 10 years. 
 
Finally, we add to the model the assumption that the observed cost of capture from a high-purity project is 
less useful for reducing the uncertainty in capture costs from power plants, and that the observed cost of 
storage from an EOR project is less useful in reducing the uncertainty in non-EOR storage costs.  We 
model this reduced learning by using a 2x1 weighting vector . W describes how much of the 
learning obtained should actually be considered in the updated posterior distributions. For example ws 
will be 0 if we assume no transferable learning from EOR to non-EOR storage. If we assume half the 
learning to be transferable ws will be 0.5. 
 
The reward function for this example depends solely on minimizing the uncertainty in the final period T, 
and does not consider any time-value of learning.  
 

3.2 Reduced Analytical Model 
 
In the reduced model presented below, we try to solve the dynamic program analytically for a reduced 
version of the problem, considering two possible decisions.  
 
We model the cost of CCS as consisting of two components, capture and storage, denoted Cc and Cs. The 
average cost of each component is uncertain, but is described by a Gaussian probability distribution with 
parameters  and  where  and  represent the uncertainty (standard deviation) around 
the expected average cost m. Individual project cost vary around the average with variability  and  
respectively. Every time we invest in either technology component storage or capture we observe a 
realized cost that is used to update the parameters of the distribution. Every observed cost reduces the 
uncertainty, but if the expected average cost in a given period exceeds a threshold  one cannot invest 
due to financing constraints. In that case the parameters of the probability distribution remain the same, 
i.e.  = . There are only two time periods, and in each time period one can make only 
one investment due to a limited budget: either invest to gain one capture cost observation or invest to gain 
one storage cost observation. In other words the weighting factor of the two decisions are such that 
wd=c=[1,0] and wd=s=[0,1]. Denoting as  the uncertainty of component j in period t, , and  
the total uncertainty assuming average capture and storage cost are independent and identically 
distributed we have that 
 

 

 
The objective is to choose a portfolio, p, of investments in the two periods such that one minimizes the 
total uncertainty : 
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To simplify, assume only two possible portfolios, p1 and p2 such that  and 

. Portfolio p1 is one where you invest exclusively in capture, i.e. you put all 
eggs in one basket, and portfolio p2 is one that is diversified. We want to find the situations when a 
diversified portfolio is preferred, i.e. when: 
 

 
 

 denotes the probability that the expected average cost at the start of the second period is 
lower than If that is not the case, one cannot gain another cost observation, and the parameter values 
remain unchanged.  
 
If we choose portfolio 1, we show in appendix B that the expected total uncertainty at the end of the 
second period is given by: 
 

 

 

As shown in appendix A, we have that . We can therefore rewrite 

 as . Since  we have that 

, where F is the Gaussian CDF with mean  and 

standard deviation .  
 
For portfolio 2, the first period decision is investment in storage, and the second period decision is 
investment in capture. Since we have not observed any capture cost in the first period we have that 

 . The expected total uncertainty is therefore the following deterministic expression: 
 

 

 
 
As shown in appendix B, given a situation where capture is twice as uncertain as storage, but has only 
half the variability, and denoting as r we have that 
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For ] and we have that can be bounded on the lower end by . 

Dividing by  the expression  can be rewritten as 
 

 

 
 
The above expression can be solved numerically, leading us to finally conclude that 
 

 
 
In other words: if we believe that the uncertainty is the cost of capture is twice the uncertainty in cost of 
storage, and that the variability in cost of capture is half that of the variability in cost of storage, then we 
have shown above that the diversified portfolio is always the preferred option as long as  
 

3.3 Cost Assumptions 
 
Cost assumptions must be treated with caution. Flyvbjerg et al. (2003) [19] showed that costs are 
generally underestimated for large and complex infrastructure projects, and there is reason to be similarly 
cautious for CCS projects. The inputs used should therefore be regarded as more of a representation of a 
stylized type of project, highlighting differences between the four quadrants in Figure 1, rather than an 
accurate prediction of what future costs will be. In our model we report capture costs in $/tonne avoided 
whereas storage costs are reported in $/tonne captured . 
 
The cost of capture from power plants has been referenced thoroughly in the literature.  IEA (2011) [20] 
examined cost studies from eight different organizations with avoided costs ranging from $40-$69/tonne 
CO2. Recent data in ZEP (2011) [21] also suggests an avoided cost of around $44/tonne CO2. Given the 
inherent uncertainty of cost estimates we nonetheless would like to model a greater range of uncertain 
costs, particularly for demonstration projects. Estimates of first of a kind avoided costs at Norway
Mongstad project was estimated by one report at between approximately $228-$395/tonne CO2 (Klif, 
2010 [22]). Although these costs are probably not representative of likely future average Nth of a kind 

 

 Converting from tonnes of CO2 avoided to tonnes of CO2 captured is done by dividing by . For an energy 
penalty of 25% and 90% capture his is equivalent to dividing by a factor of 0.72. Therefore, 100 tonnes avoided is equivalent to 139 
tonnes captured.  Also $100/tonne captured equals $72/tonne avoided. 
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costs, they do highlight the significant uncertainty that surrounds the cost of demonstration projects. The 
Gaussian probability distribution that we believe captures this range of uncertainty is one with mean 
values ranging from $40-$160/tonne CO2 avoided, and a maximum standard deviation of $15.5/tonne 
(equivalent to +/- $30/tonne). 

The symmetric Gaussian distribution may not necessarily be the most appropriate choice for modeling 
uncertain costs for large engineering projects. Actual costs are probably more likely to be higher than 
anticipated, rather than lower. That will not be the case for a Gaussian distribution with a certain mean 
cost: the probability that actual costs will be lower than the mean is equal to the probability that cost will 
be higher than the mean. A more appropriate model of cost uncertainty would be some positively skewed 
distribution with a right-
of the distribution will shrink, and the distribution will converge on the actual mean cost. Future versions 
of the model will be expanded to include for different distribution families. 

Data from Alstom (2011) [23] suggests a non-EOR storage cost of around $10/tonne CO2 captured for 
onshore storage, with an additional $5/tonne CO2 captured for transport. Yet due to lack of experience 
with large-scale injection and long-term storage, it is more appropriate to use a range of storage costs. 
More specifically, an additional $40/tonne CO2 is added to account for any contingencies related to long-
term monitoring and potential mediation of leaks. The Gaussian probability distribution that we believe 
captures this range of uncertainty is one with mean values ranging from $10-$55/tonne CO2 captured, and 
a maximum standard deviation of $7.5/tonne CO2 (equivalent to +/- $15/tonne CO2). As with capture 
cost, some positively skewed distribution is likely a better choice to represent cost uncertainty and this 
will be addressed in future versions of the model.  
 
We assume the cost of high-purity capture to be $16/tonne CO2 captured (equivalent to $22/tonne CO2 
avoided), similar to OPEX costs at Sleipner, reported in IEA (2008) [24]. EOR storage cost is set at -
$15/tonne CO2 captured .  
 
Standard deviations do not necessarily give an immediate, intuitive sense of the degree of uncertainty. 
The distance from the mean that samples can fall is a more intuitive metric. Table 1 therefore shows the 
95% confidence interval for different standard deviations, rounded to the nearest integer. For example, if 
the standard deviation of the cost distribution is $7.5/ton and the mean value $25/ton, then, with 95% 
certainty, actual costs will fall in the interval [10$/ton, $40/ton]. 

Table 1 Relationship between standard deviation and uncertainty range 

Standard deviation ($/tonne) Deviation from mean value 
($/tonne) 

7.5 +/- 15 

15.5 +/- 30 

 
 
Demonstration projects are likely to cost more than future expected Nth plant costs. In the results section 
we will therefore use a base case of an expected mean cost of capture of $100/tonne CO2 avoided and an 
expected mean storage cost of $25/tonne CO2 captured. These costs are significantly higher than the 

 

 Assuming 2% of oil price at $70/bbl in Mcf, 18 ton/Mcf, subtracting $10/ton for transport.
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numbers in (IEA, 2011) [20], but we feel that a conservative estimate, rather than a too optimistic one, 
should be the basis of CCS policy. 
 
To calculate the total lifetime cost of a CCS project we consider a 500 MW net supercritical coal plant 
with an emissions rate of 830 g CO2/kWh without CCS. Assuming a 25% energy penalty this results in an 
emission rate of 1107 g CO2/kWh for the CCS plant. With 90% capture and a 75% capacity factor a total 
of 3.27 Mt CO2 will be captured annually, although the amount of CO2 avoided will only be 2.36 Mt. 
Consequently, total annual cost of a CCS project is the cost of capture and storage, in $/ton avoided, 
multiplied by 2.36 Mt. The thirty-year net present value of costs is calculated using a 7% discount rate.  
  
The degree of variability in capture and storage costs is hard to determine ex-ante, as we have not yet 
observed how far from the average the cost of individual projects will be. We believe that there will be 
significant variability in the cost of capture from project to project, but a lot of this can be accounted for, 
such as differences due to land cost, coal type, labor cost etc. Consequently we believe that the variability 
that we cannot account for will be small.However, for storage costs, it is likely to be harder to account for 
project heterogeneities. Site-specific particularities of geologic formations could impact costs in 
unpredictable ways, and consequently there will be a lot of variability in storage cost that we cannot 
account for. To illustrate the difference in capture and storage variability we choose a capture standard 
deviation of $4/tonne CO2 avoided (equivalent to +/- 8/tonne CO2) and a storage cost standard deviation 
of $8/tonne CO2 captured (equivalent to +/- 16/tonne CO2). It is important to acknowledge the lack of 
empiric data to test our assumptions. Nonetheless, as our modeling approach is meant for illustrative 
purposes, we use the above variability to illustrate our belief that the variability we cannot account for 
will be greater for storage cost than for capture cost. 
 
Although we will analyze the effect of different budget levels per period in the result section we assume a 
baseline budget of $8 billion per investment period. This amount counts both public and private funds 
made available for CCS demonstration. With a total of around $180 million spent on capture and storage 
projects by the U.S. Department of Energy in 2011, and another $165 million requested for 2013 (DOE, 
2012 [25]), it seems that our estimate of public funds available per decade is reasonable. 

3.3 The relative roles of uncertainty and variability 
 
In our notation, the variability of any individual project relative to the mean cost of projects is , while 
the uncertainty in the average costs is s.  As described above (see also Appendix 1), after the realized cost 
of a project is observed, the revised uncertainty  in average costs, expressed as a standard deviation, 
is given by: 
 

                                                                                                                           (1)                    

 
Reorganizing (1) yields 
 

                                                                                                                            (2) 
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Because will always be greater than zero, (2) is a monotonically decreasing function. Furthermore, 
(2) shows that st+1 is always less than st, which is intuitive given that it represents our updated knowledge. 
When the ratio   is small, representing that our uncertainty in average costs is small relative to a large 
variability in any individual project, the learning effect will be small. Similarly, when this ratio is large, 
representing that our uncertainty in average costs is large while the individual variability is small, each 
observation will yield significant uncertainty reduction. If the distribution from which samples are drawn 
exhibits little variability (i.e.,  is small) then any sample drawn will likely be very close to the actual 
mean of the distribution and learning will be significant. On the other hand, if samples are drawn from a 
distribution with significant variability, more samples will be needed to obtain a reasonable estimate of 
the mean. Each individual observation provides less information, and more samples will be needed in 
order to reduce the uncertainty. As illustrated graphically in Fig. 2, learning decreases with increasing 
variability ( ). A subtlety to be understood is that this treatment assumes that the entity observing the 
costs will know beforehand whether the variability is large or small. The representativeness of any 
observation of cost for the average value depends on the variability.  
 
 

 

Fig. 2  

4. Results 
 
The total demonstration budget plays a key role in determining the optimal portfolio of projects. If the 
budget is too low, only high-purity projects will be undertaken due not enough funds being available for 
power sector projects. If the budget is unlimited, only CCS projects will be undertaken due to their 
maximization of learning. The interesting dynamic nonetheless occurs from the situation in between these 
two extremes, where not enough money exists to only do CCS projects, but not so little as to rule them 
out completely. Also, for the results shown here, we assume that the variability in sequestration costs is 
greater than the variability in capture costs.  This assumption is based on the hypothesis that the 
developing accurate cost estimate models for geologic storage is harder than it is to develop accurate cost 
estimate models for power plants. 
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For a first analysis, we assume that EOR storage does not reduce storage uncertainty and that high-purity 
capture does not reduce capture uncertainty (i.e. CCUS projects only reduce capture uncertainty, and HP-
CCS projects only reduce storage uncertainty). We assume an expected mean capture cost (mc) of 
$100/tonne CO2 avoided and an expected mean storage cost (ms) of $25/tonne CO2 captured.  Figure 3 
shows the optimal investment strategy as a function of the absolute uncertainty (s) in capture costs and 
sequestration costs. To get an intuitive understanding of the relationship between standard deviations (i.e. 
uncertainty) and ranges of possible values refer to Table 1. Current proposals to shift investments to 
solely EOR storage (CCUS) are only optimal when sequestration costs are nearly certain (dark blue 
region along bottom).  For relatively low uncertainty in sequestration costs, the optimal strategy is a mix 
of one CCS and one CCUS (light blue region). For increasing standard deviations in storage costs, the 
preferred portfolio is one CCS project and one HP-CCS project (red region).   
 

 

Fig. 3  

Next we assume that EOR storage reduces storage uncertainty and that high-purity capture will reduce 
capture uncertainty (i.e. CCUS projects will reduce both storage and capture uncertainty, and HP-CCS 
projects will also reduce both capture and storage uncertainty). We model this with the weighted 
approach described in section 3. If EOR projects reduce the uncertainty in sequestration costs (with a 
weight of 0.8), the strategy (CCS, CCUS) is optimal for close to all ranges of storage uncertainty (Figure 
4, left panel).  If high-purity projects reduce the uncertainty in capture costs, a (CCS, CCUS) strategy is 
optimal over a smaller range of storage cost uncertainty (Figure 4, right panel). In general, the degree to 
which this boundary between strategies moves depends on how close the learning weight for EOR (HP) is 
to 1, and how close the learning weight for HP (EOR) is to zero. A key result is that even if the learning 
weight for EOR storage is 0.8, a portfolio of only CCUS projects is advisable only if storage uncertainty 
is effectively zero. Nonetheless, a high learning weight for EOR storage expands the light blue area so 
that a partial shift to CCUS is advisable for a greater number of situations.  
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Fig. 4 (a) Effect of learning from EOR (w=[0.8,0]); (b) Effect of high-purity learning (w=[0, 0.8]) 

 
It is plausible that some experience with EOR storage would reduce uncertainty in non-EOR storage.  
However, it is harder to imagine that experience with high-purity capture projects would significantly 
reduce the uncertainty in power plant capture. We base this argument on the simple fact that high-purity 
capture of CO2 has been done commercially for decades without having a discernible positive impact on 
reducing uncertainty about power plant capture costs.  
 
4.2 Forward simulation 
 
By running a forward Monte Carlo simulation we can simulate possible paths a demonstration program 
can take. By doing so, we can both draw insight about how decisions that are made over time, and also 
how the optimal policy is likely to yield different outcomes compared to a CCUS-only portfolio. 
 
We simulate two strategies. The first strategy is one where the decision maker follows the optimal policy 
derived above. Once a decision to invest in a portfolio is made, the cost is modeled stochastically and the 
decision maker then updates the parameters (mt,c, st,c) and (mt,s, st,s) according to the expression in section 
3.1. In the following period the optimal decision is chosen based on the updated parameters from the prior 
period. The second strategy is one where the decision maker only invests in CCUS projects. 
 
We run a forward simulation for a scenario where the actual cost of capture is 25% higher than initially 
anticipated and the actual cost of storage is 25% lower than initially anticipated. We want to test how the 
final cost estimate after the demonstration program compares to the true values.  We assume an initial 
capture cost uncertainty of $15/ton CO2 avoided and a storage cost uncertainty of $7.5/ton CO2 captured 
and that no learning occurs from high-purity capture projects and EOR storage projects. Running 100,000 
simulations, Figure 5 shows the relative accuracy in the final estimate of the average cost of a CCS 
project. The initial error in the cost estimate is displayed to show how the demonstration program narrows 
the uncertainty range. The optimal policy yields an average cost estimate that is only 3.1% from the true 
value, compared to an average cost estimate error of 5.69% for the CCUS-only portfolio. The relative 
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attractiveness of the optimal portfolio increases when the true cost of storage is significantly different 
from the initial estimate, and decreases when the initial guess is more accurate. 
 

 

 

Figure 5 Comparing the relative accuracy in the average cost of a CCS project for the optimal portfolio and a CCUS-only portfolio. 
Edges of box show 25th and 75th percentiles, whiskers show 10th and 90th percentiles. Assumptions:  (m0,c, s0,c)=(100,15), (m0,s, 
s0,s c s)=(4,8), (wc , ws)=(0,0). 

 
The optimal choice in the first period is always one HP-CCS project and one CCS project given our initial 
assumptions. However, the second-period choice is stochastic and depends on the expected average cost 
of capture and storage. 45% of the time the expected average cost of capture is equal to $130/ton CO2 
avoided and above. For that situation, two HP-CCS projects are preferred. When the expected average 
capture cost is lower, mostly one CCUS project and one CCS project is preferred. Only in a minority of 
cases (10%) does the decision maker choose the same portfolio as in the first period, notably if the 
expected average cost of storage is $10/ton captured or below. 
 
As shown in the figure it is clear that both policies yield significantly more accurate cost predictions. 
Nonetheless, the optimal policy yields a final cost estimate that is on average 45.5% more accurate than 
the CCUS-only portfolio. Furthermore, the average cumulative cost of a demonstration program that 
follows the optimal policy is $11.065 billion, whereas it is $12.627 for the CCUS-only portfolio. The 
optimal policy therefore yields both more accurate cost predictions and on average is over $1.5 billion 
cheaper than relying exclusively on CCUS. 
 
4.3 Sensitivity analysis  
 
 
 
5. Conclusion 

The key insight of the model is that the relative amounts of uncertainty and variability will have a 
significant impact on determining optimal CCS portfolios, if the near-term objective is to gain knowledge 
and reduce uncertainty. The key insight is that the more variability there is, the harder it is to reduce 
uncertainty in the average cost. This is important for CCS, since variability will have a large impact on 
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the difficulty of learning about the cost of storage and capture. We argue that accounting for project-
specific heterogeneities in geologic storage is harder than accounting for project-specific heterogeneities 
in capture plants. The variability we cannot account for will therefore be greater for storage cost than for 
capture cost. Consequently we will need more observations to reduce average storage cost uncertainty 
than we will need to reduce average capture cost uncertainty.  Since cost uncertainty is a proxy for lack of 
knowledge, we will need more storage demonstrations than capture demonstrations to fully develop CCS 
as a viable mitigation option. 
 
With public funding likely to be limited in coming years, the simple, stylized example presented here 
provides valuable insight about the optimal allocation of funds across different demonstration projects. 
Notably, a CCUS-only approach (investing exclusively in power projects with EOR storage) to 
developing CCS as a mitigation technology would only advisable if there was little uncertainty regarding 
non-EOR storage. Given our lack of experience with large-scale injection of CO2 in geologic formations, 
this condition is unlikely to be true. U.S. policy makers should therefore be particularly cautious in 
suggesting a CCUS-only approach to CCS development. 
 
However, a portfolio consisting of a mix of CCS and CCUS projects is an effective strategy to gain 
knowledge if capture uncertainty is high while non-EOR storage uncertainty is low and/or EOR storage 
projects can teach us important lessons about non-EOR storage. 
 
Due to the larger absolute values of capture costs, it seems fair to assume that absolute capture 
uncertainty will be higher than absolute storage uncertainty. Yet it is unclear whether storage cost 
uncertainty is low enough to justify CCUS in the case where no learning from EOR storage is transferable 
to non-EOR storage. A partial move towards CCUS can however be advisable if we simultaneously also 
believe that EOR storage will provide significant knowledge for non-EOR storage.  
 
It is clear that the important roles of variability, uncertainty, and learning from EOR storage in 
determining optimal demonstration portfolios have not been studied thoroughly by the CCS community. 
The results of this analysis suggest that more is warranted. Future extensions to this work include 
extending the model to consider combinations of more than two projects per period, and more extensive 
sensitivity analysis. Coupling the expanded model with better estimates of actual variability and 
uncertainty will provide important insight about the future path of CCS development. 
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Appendix A, Deriving analytical learning expression 

Given two Gaussian functions g and f, where f is the pdf of cost and g is the pdf of the mean of f, we 
have: 
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We now seek to use a realized cost  to update our parameters m and s for g.  
Bayes theorem gives us 
 

   
 
Using equation (1) and (2) and ignoring any constants yields 
 

 
 
 
In other words we have 

  
 
With 

   

 
                               

 
Starting with an initial guess of the parameters of g, and knowing , we now have an analytical 
expression for updating (m, s) for each cost  that is observed. 
 
Assuming that probability distributions for capture and storage costs are independent and identically 
distributed, the mean and standard deviation of the convoluted total cost function will be 
 

 

 

Appendix B, Analytical model solution 
 
 
As shown above, for a given  , we have that 
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The uncertainty  corresponds to the uncertainty in the average cost of technology j at the end of the 
first period if we have observed one realization of the cost of technology j. The uncertainty  
corresponds to the initial uncertainty in the average cost of technology j. In the second period, one can 
only observe an additional cost realization if the expected average cost in that period is below the 
threshold . However, the average cost  is stochastic, depending on the observed cost in the first 
period where . Therefore if  then , but if  then 

  

 
For portfolio 1 we therefore have that 
 

 

 
Denoting as , and f the Gaussian probability density function, the expected total 

uncertainty  , given that we have chosen portfolio , can be written as 

 
 

 

 

 

 

 
Assuming  , and denoting as r we have that  and equation (1) becomes 
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Since 
 

 

And  
 

 

 
 
For portfolio p2 such that  we have that at the end of the second period we have the 
following uncertainties  
 

 

 

 
However, these expressions do not depend on stochastic outcomes, therefore: 
 

 

 
Using the assumptions above we have that  
 

 

 
 
We want to find the situations for which  
 

 
 
Which can be rewritten as 
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The left term can be bounded at the lower end, so that for ] and we that  
 
 

 

 
The inequality   can therefore be rewritten as  
 
 

 

 
 
Which can be solved numerically, and leads us to conclude that 
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