Proceedings from the 2012 CCS Cost Workshop

25-26 April 2012 California, US Published: April 2013, By: Global CCS Institute, Canberra, Australia

Sponsored by:

Carnegie Mellon University

CONTENTS

Agenda	2
Participants	4
Workshop notes and outcomes	6
Opening session	11
Session 1: CCS costing methods and methodology	19
Session 2: Understanding the cost of demonstration projects	85
Session 3: Transport, storage and utlization	152
Session 4: Evaluating economics of emerging processes	230
CCS cost bibliography	297

AGENDA

DAY 1	WEDNESDAY, 25 APRIL 2012					
08:30 – 9:00	08:30 – 9:00 Registration and/or Continental Breakfast					
09:00 - 9:30	Opening Session					
	 Welcome: Richard Rhudy, EPRI Purpose and scope of workshop: Richard Rhudy, EPRI Introduction of participants (all) Overview of agenda: John Davison, IEAGHG 					
9:30 – 11:00	Session 1: CCS Costing Methods and Measures					
	 Overview: Ed Rubin, Carnegie-Mellon (20 minutes) Respondent 1: Ron Schoff, EPRI (12 minutes) Respondent 2: Rosa Maria Domenichini, Foster Wheeler (12 minutes) Respondent 3: Vic Der, Global CCS Institute (12 minutes) Questions/discussion (34 minutes) 					
11:00 – 11:30	Break					
11:30 – 1:00	Session 2: Understanding the Cost of Demonstration Projects					
	 Overview: Howard Herzog, MIT (15 minutes) Australian Demo: Chris Greig, University of Queensland (15 minutes) Europe Demo: Clas Ekstrom, Vattenfall (15 minutes) Canada Demo: Maxwell Ball, SaskPower via teleconference (15 minutes) Questions/discussion (30 minutes) 					
13:00 – 14:00	Lunch					
14:00 – 15:30	Session 3: Transport, Storage, and Utilization					
	 DOE Transport and Storage Model: Tim Grant, NETL (20 minutes) Economic value of EOR: Vello Kuuskraa, ARI (20 minutes) EOR operator perspective: Mike Moore, BlueSource (20 minutes) Questions/discussion (30 minutes) 					
15:30 – 16:00	Break					
16:00 – 17:30	Session 4: Evaluating Economics of Emerging Processes					
	 Flavio Franco, Alstom, presented by Carl Bozzuto (20 minutes) Abhoyjit Bhown, EPRI (20 minutes) John Wimer, NETL (20 minutes) Questions/discussion (30 minutes) 					
17:30 – 18:00	CCS Cost Bibliography: Howard Herzog, MIT; Chris Short, Global CCS Institute					
18:00	Adjourn, Day 1					
19:00	Dinner					

DAY 2	THURSDAY, 26 APRIL 2012				
09:00 - 9:45	Panel Discussion: Perspectives on CCS Costs in China				
	 David Julius, Duke Energy (10 minutes) Carl Bozzuto, Alstom (10 minutes) Questions/discussion (25 minutes) 				
09:45 – 10:00	Charge to breakout sessions (Howard Herzog)				
10:00 – 10:20	Break				
10:20 – 12:00	Breakout Sessions				
	Breakout 1: CCS Costing Methods and Measures Chair: Ed Rubin, Carnegie-Mellon Rapporteur: Ron Schoff, EPRI Breakout 2: Understanding the Cost of Demonstration Projects Chair: Howard Herzog, MIT Rapporteur: Dick Rhudy, EPRI Breakout 3: Transport, Storage, and Utilization Chair: Chris Short, Global CCS Institute Rapporteur: Sean McCoy, IEA Breakout 4: Economics of Emerging Processes Chair: Clas Ekstrom, Vattenfall Rapporteur: John Davison, IEAGHG				
12:00 – 13:00	Lunch				
13:00 – 14:00	Reports from Breakout Sessions (15 minutes each)				
14:00 – 15:00	Wrap-up Session: Ed Rubin, Carnegie-Mellon				
	 Dissemination of results Ed Rubin, Carnegie-Mellon (15 minutes) Discussion (15 minutes) Recommendations/plans for follow-up action/future meetings (30 minutes) 				
15:00	Adjourn: Richard Rhudy, EPRI				

PARTICIPANTS

Robert Bailes	ExxonMobil
Robin Bedilion	EPRI
Abhoyjit Bhown	EPRI
James Black	NETL
George Booras	EPRI
Carl Bozzuto	Alstom
Dave Butler	CCPC
Robert Craig	ICO2N
Doug Daverne	SaskPower
John Davison	IEAGHG
Vic Der	Global CCS Institute
Des Dillon	EPRI
Rosa Maria Domenichini	Foster Wheeler
James Dooley	PNL
Clas Ekström	Vattenfall
Nils Eldrup	Tel-Tek
Tim Grant	NETL
Chris Greig	U of Queensland
Howard Herzog	MIT
Robin Irons	E.ON
David Julius	Duke
Vello Kuuskraa	ARI
Jeffery Lewis	CCS TLM
Wilfried Maas	Shell
Andrew Maxson	EPRI
Sean McCoy	IEA
Mike Moore	Blue Source
Mike Parker	ExxonMobil
Satish Reddy	Fluor
Richard Rhudy	EPRI
Ed Rubin	Carnegie Mellon University
Ron Schoff	EPRI
Christopher Short	Global CCS Institute
Dale Simbeck	SFA Pacific
Dalton Stuart	EPRI
John Thompsom	Clean Air Task Force
John Tombari	Schlumberger

PROCEEDINGS FROM THE 2012 CCS COST WORKSHOP

Rob Trautz Paul Webly Jennifer Wilcox John Wimer EPRI University of Melbourne Stanford NETL

INTRODUCTION

The third meeting of the Expert Group on CCS costs was held on April 25-26 2013 and hosted by the Electric Power Research Institute in Palo Alto. The current understanding of the costs of CCS were presented at that meeting and the agreed outcomes for the Group to take forward are included in this document. This work program consists of efforts to improve both the transparency of CCS cost calculations and the broader challenges associated with conveying messages around costs to the broader community.

The meeting focused on a number of issues including considering guidelines and recommendations developed by a Task Group for a costing method and nomenclature that could be broadly adopted to produce more consistent and transparent cost estimates for CCS applied to electric power plants; along with how to evaluate emerging proess as well as transport, storage and utilization.

Topics discussed over the two days included:

- What are the main reasons for the reported costs of CCS demonstrations being significantly higher than the numbers in published CCS cost studies?
- What information would be useful to have from demonstration projects to help improve the published cost estimates?
- Should transport and storage form part of the work program to harmonize cost methods and nomencluatrue? And if so, what cost elements can be harmonized?
- How should 'enhanced oil recovery' storage operations be incorporated in harmonization efforts for storage? Alternatively, do the cost categories vary compared to saline formations?
- What types of methodologies are used to estimate costs for emergin processes?
- What kind of information should be reported in order to understand 'what lies behind' economic evaluations of emerging processes?
- How is the mix of commercially proven and modifications to commercially proven technologies best handled in terms of estimating equipment costs?
- How can uncertainties and risks be assessed in relation to estimated costs?

The meeting was organized by a Steering Group including representatives from: Carnegie Mellon University (Ed Rubin), Electric Power Research Institute (Richard Rhudy), Global CCS Institute (Christopher Short), International Energy Agency (Sean McCoy), IEA Greenhouse Gas R&D Programme (John Davison), MIT Carbon Sequestration Initiative (Howard Herzog) and Vattenfall (Clas Ekström).

Cost issues regarding demonstration projects:

There are many reasons for differences between the benchmark studies and the project cost estimates including:

- Time reference
- Scope (greenfields vs. retrofits)
- Location (available infrastructure, logistics, local costs, climate)
- Maturity (e.g. IGCC is less mature)
- Economies of scale (demonstration projects on smaller side).

Further, there are methodological challenges in comparing technology cost studies with estimated project costs including:

- Benchmark studies not required to be guaranteed
- Project proposals may be have an element of 'gold plating' to guard against risk.

Proposed follow-up action:

- Reconcile actual project studies and benchmark studies
- Understand cost evolution as a function of project evolution
- Develop a cost roadmap from FOAK to NOAK.

Transport, storage and utilization issues:

Issues discussed included:

- Exploration cost is all about the likelihood of success; this is dependent on the availability and quality of data.
- Storage costs are not just about the cost at one site, but also the cost of characterizing other options in a portfolio of sites. The whole cost of characterizing the portfolio of sites, many of which will be inappropriate for storage, is covered by a handful of successes. This highlights the need for regional site characterization.
- The ability of larger companies versus small-mid sized producers in managing these risks and their costs presents costing challenges on a standardized basis.

Other issues noted include:

- How do the cost of compliance with regulations affect the cost of storage? Was there an underestimation of these type of costs?
- The time-flow of costs as well as expected problems and time to identify solutions should be included. For example, contingencies in well drilling and completions are typically considered to be around 20-25 per cent in oil and gas projects.
- There is a trade-off between transport and storage costs as increased transport costs to more remote, but less costly, storages locations can be part of the storage assessment (or storage 'plays').
- Nomenclature for different levels of cost estimate accuracy for storage could be developed in order to reduce confusions.
- The difference between observed and realized cost estimates is very important—there is large population of sites and associated storage costs, but the higher cost estimates will never be realized. Of course, the characterization costs will be!
- How can risk for storage characterization be best estimated in cost assessments? What is the appropriate change in the rate of return?
- As an EOR project is characteristically different from a pure storage operation, any methodology should encourage the identification of specific assumptions about the value of CO₂, how this is distributed between the source and EOR operation, and the length of time for the revenue stream.

Proposed follow-up action:

Overall, it was recognized that there was limited information in the public domain that addresses many of these issues. It was recommended that:

- Develop common method of cost estimation and nomenclature for transport and storage elements. Give consideration to what transport and storage elements should form part of these efforts, and identify the scope and boundary conditions of these components.
- Cost estimate classifications should be identified in storage specific terms:
 - Specifically, identify categories that correspond to different types of storage activities.
- Develop a classification system that appropriately aligns decreasing levels of uncertainty with additional effort which will increase costs.

- Uncertainty should be incorporated in all storage cost assessments.
- EOR should not generally be incorporated in harmonization efforts for storage as the cost categories vary when compared to saline formations. EOR is a complicated issue and should generally be treated as a net revenue stream.

Costs of emerging processes

There are a number of challenges in considering the costs of emerging processes. These can include:

- The long timescales associated with introducing new technologies. It is suggested that historical examples of flue gas desulphurization or CCGT's are examples where times frames of 50 years or more were required to transition from idea to 10 per cent of installed capacity:
 - This suggests careful consideration required around timing for when technologies should be rejected. Unless there are fundamental reasons to reject a technology, it should be rejected 'too early' in the development cycle.
- Early developments of a technology often target energy consumption, which is relatively easy to analysis, but minimum energy does not necessarily result in the minimum cost.
- Emerging processes need to be compared against a baseline, but the baseline is itself moving due to technological improvements.
- Scalability can sometimes be an issue, such as the difficulty of synthesizing certain novel solvents at a large-scale. This suggests that assessment of the scalability of a technology may serve as a screening factor for prioritizing funding.
- Existing cost analysis of emerging processes can sometimes omit operating cost assessments due to lack of information. However, operating costs can sometimes be significant, such as the cost of replacing membranes.

Although no consensus was reached regarding issues regarding how to cost emerging processes, the following questions and responses were considered:

- What do we mean by emerging processes?
 - Don't look at costing for new concepts with limited data, uncertainties so large it is pointless.
 - First stage is to assess is it potentially technically feasible screen based on thermodynamics, kinetics, complexity etc.
 - Only look at costs later.
- What types of methodologies are available to estimate costs for emerging processes?
 - Absolute costs should be identified for real plants, but estimating presents major problems.
 - Relative cost comparisons could be adequate for emerging processes.
 - Clear need to identify a solid baseline reference.
 - What type of baseline can serve: a new plant? a retrofit? with or without existing capture technology?
 - The methodology should identify whether the process has 'headroom', that is will it have significant advantages?
- In most emerging technologies, some components are proven, others are modified versions, some under development whilst others are entirely theoretical. How can this be handled in terms of estimating equipment costs?
 - Any methodology should narrow costing to new processes or components.
 - The methodology should identify the percentage that is emerging equipment, which is often only 15-20 per cent.
 - This often requires preliminary drawings and estimates (e.g. weight, number of welds etc). Analogues
 can serve well here for processes/equipment not previously designed.

- How can uncertainties and risks be assessed in relation to estimated costs?
 - Process contingencies are challenging as they reflect plant construction issues, but how to reflect uncertainty whether a process will work as projected?
 - Risks with emerging processes are obviously high, but high contingencies may bias cost estimates upwards inappropriately for emerging process assessments.
 - Can consider a 'hurdle rate' rather than a process contingency but it would be inappropriate to use both.
 - An alternative is to eschew the use of process contingencies, but require sensitivity analysis on new components (performance and costs) as an approach.
 - The methodology should consider how to assess likely cost reductions after it has reached the 'demonstration stage' (i.e. the nth plant).
 - Assessment of likely cost reductions are an important element in prioritizing development funding.
 - Often, the process of doing the cost estimate and sensitivity analysis contributes to the learning as much as technological issues.
- What kind of information should be reported in order to understand 'what lies behind' economic evaluations of emerging processes?
 - The methodologies and assumptions need to be reported. The framework identified by the Task Force on Costing Methods should be used, subject to restrictions regarding commercial confidentiality and intellectual property issues.

EPEI ELECTRIC POWER RESEARCH INSTITUTE

WELCOME

Richard Rhudy Technical Executive CCS Cost Workshop April 25-26, 2012 Palo Alto, California

Welcome

- Organizing Committee
 - John Davison, IEA GHG
 - Clas Ekström, Vattenfall
 - Howard Herzog, MIT
 - Sean McCoy, IEA
 - Richard Rhudy, EPRI
 - Ed Rubin, CMU
 - Chris Short, GCCSI

Welcome

- Economics are important to EPRI
 - Need good cost studies for early development processes and those near commercial development
 - Need to understand difference between generic studies and actual costs of real projects
 - Better understand differences in economics between different regions of the world
- Why we joined the committee that put this effort together
 - Wanted to help bring consistency to costing methodology and result in more easily comparable evaluations

Administration

- Signup sheet
 - Initials on attendance—agenda available
 - Signup for Dinner—maps and directions available
 - Indicate 1st and 2nd breakout choice
 - Indicate if OK to include email on attendance list
 - Approval of presentations
 - Cell phones

Purpose and Scope

- Initial meeting in Amsterdam during GHGT 10
 - Determine the need for a group to focus on CCS costs
- Second meeting in Paris at the IEA offices
 - Several presentations on CCS cost issues
 - Outcome
 - Published report
 - Set up 2 working groups
 - CCS costing methods and measures (Ed Rubin)
 - CCS cost Bibliography (Howard Herzog)
- This is the third meeting
 - Continue the dialogue
 - Report on results of working groups
 - Identify additional efforts the group can undertake

Meeting Structure

- First Day
 - Reports on working groups
 - Topical presentations and discussion
- Second Day
 - Panel discussion
 - Breakout Sessions
 - Wrap-up and recommendations for follow-up

Together...Shaping the Future of Electricity

Overview of the Agenda

John Davison IEA Greenhouse Gas R&D Programme

Workshop on CCS Costs EPRI, Palo Alto, April 25th-26th 2012

Day 1, Morning

- Opening Session (9:00-9:30)
- CCS Costing Methods and Measures (9:30-11:00)
 - Overview: Ed Rubin (Carnegie Mellon University)
 - Respondents: Ron Schoff (EPRI) Rosa Maria Domenichini (Foster Wheeler) Vic Der (GCCSI)
 - Questions/discussion
- Understanding the Cost of Demonstration Projects (11:30-1:00)
 - Overview: Howard Herzog (MIT)
 - Australian Demo: Chris Greig (University of Queensland)
 - Europe Demo: Clas Ekström (Vattenfall)
 - Canada Demo: Maxwell Ball (SaskPower) via teleconference
 - Questions/discussion

Day 1, Afternoon

- Transport, Storage and Utilization (2:00-3:30)
 - DOE Transport & Storage Model: Tim Grant (NETL)
 - Economic Value of EOR: Vello
 - EOR Operator Perspective:
 - Questions/discussion

- Vello Kuuskraa (ARI) Mike Moore (BlueSource)
- Evaluating Economics of Emerging Processes (4:00-5:30)
 - Flavio Franco (presented by Carl Bozzuto) (Alstom)
 - Abhoyjit Bhown (EPRI)
 - John Wimer (NETL)
 - Questions/discussion
 - CCS Cost Bibliography (5:30-6:00)
 - Howard Herzog (MIT) and Chris Short (GCCSI)

Day 2, Morning

- Panel Discussion (09:00 09:45)
 Perspectives on CCS Costs in China
 - David Julius (Duke Energy)
 - Carl Bozzuto (Alstom)
 - Questions/discussion
- Breakout Sessions
 - Charge to Sessions: Howard Herzog (9:45 10:00)
 - Breakout Sessions (10:20 12:00)
 - 1: CCS Costing Methods and Measures
 - 2: Understanding Cost of Demonstration Projects
 - 3: Transport, Storage and Utilization
 - 4: Economics of Emerging Processes

Day 2, Afternoon

- Report from Breakout Sessions (1:00 2:00)
 - 15 minutes each
- Wrap-up Session: Ed Rubin (2:00-3:00)
 - Presentation on dissemination of results
 - Discussion
 - Recommendations / plans for follow-up action
- Adjourn (3:00)

Toward a Common Method of Cost Estimation for Carbon Capture & Storage

Edward S. Rubin

Department of Engineering and Public Policy Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, Pennsylvania

> Presentation to the CCS Cost Workshop Palo Alto, California

> > April 25, 2012

The Context for this Talk

At last year's workshop I reviewed/discussed the:

- Common measures & metrics of CCS cost
- General methods of estimating CCS costs (ranging from "ask an expert" to detailed eng'g. studies)
- Specific methods and assumptions used by several leading organizations (EPRI, USDOE, IEAGHG, DECC)
- Influence of uncertainty, variability and bias in CCS cost estimates

Details Available in the Workshop Proceedings

• Available from GCCSI and other sponsoring organizations

> <https://kminside.global ccsinstitute.com/ community/extranet/ccs costs network>

Proceedings of the

CCS Cost Workshop

22-23 March 2011 Paris, France Published: October 2011

Sponsored by:

GLOBAL CCS

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Carnegie Mellon University

Major Conclusions

- While a number of organizations concerned with CCS have developed detailed procedures for calculating power plant and CCS costs ...
- There are significant differences in the costing methods and terminology used by organizations ...
- As well as significant differences in the major assumptions employed to analyze CCS systems.
- Often there is a lack of transparency that can lead to confusion, misunderstanding and mis-representation of CCS costs.

The Workshop Recommended ...

- An *ad hoc* Task Force be formed to recommend ways to harmonize methods for estimating and reporting CCS costs, including:
 - A common language or nomenclature for cost estimates
 - Improved methods of reporting and communicating CCS costs information
 - Ways to characterize the variability and uncertainty in CCS costs (especially for new/emerging technologies)
 - Methods to properly compare the cost of CCS to other GHG mitigation options

CCS Cost Methods Task Force

- George Booras (EPRI)
- John Davison (IEAGHG)
- Clas Ekström (Vattenfall)
- Mike Matuszewski (USDOE)
- Sean McCoy (IEA)
- Ed Rubin (CMU) (Chair)
- Chris Short (GCCSI)

Task Force Efforts to Date

- Formed in October 2011
- Developed initial goals, tasks and timetable
- Met regularly via teleconference (across 17-hr time zones), plus a day-long meeting in February
- Exchanged drafts and additional comments via email
- Prepared draft White Paper for discussion at this workshop

Our Paper Addresses Six Major Topics Relevant to CCS Costs

- Defining Project Scope and Design
- Defining Nomenclature and Cost Categories for CCS Cost Estimates
- Quantifying Elements of CCS Cost
- Defining Financial Structure and Economic Assumptions
- Calculating the Costs of Electricity and CO₂ Avoided
- Guidelines for CCS Cost Reporting

— I will touch briefly on several of these items —

E.S. Rubin, CMU

Task Force on CCS Cost Methods

Defining the Project Scope and Plant Designs

A Generalized Project Framework for CCS Cost Estimates

- CCS cost is the difference in power plants costs with and w/o CCS
- Thus, the scope and battery limits of <u>two</u> plants (reference plant and plant w/ CCS) must be clearly specified

Project Classes

- Specifications of scope grow more detailed as cost estimate is finalized for a real project
- Most CCS cost estimates are for Classes I, II and III (based on the EPRI classifications)

Item	Design- Estimate Effort Range ^(*) (%)	Project	Design Information Required	Cost Estimate Basis				
		Contingency Range ^(*) (%)		Major Equipment	Other Materials	Labor		
Class I (Similar to Amer. Assoc. of Cost Engineers	Simplified	30-50	General site conditions, geographic location and plant layout Process flow/operation	By overall project or section-by-section based on capacity/cost graphs, ratio methods, and comparison with similar work completed by the contractor, with material adjusted to current cost indices and labor adjusted to site conditions.				
(AACE) Class 5/4)			diagram Product output capacities					
Class II (Similar to Amer. Assoc. of Cost Engineers Class 3)	Preliminary	15–30	As for Type Class I plus engineering specifics, e.g.: Major equipment specifications Preliminary P&I ^(P) flow diagrams	Recent purchase costs (including freight) adjusted to current cost index	By ratio to major equipment costs on plant parameters	Labor/material ratios for similar work, adjusted for site conditions and using expected average labor rates		
Class III (Similar to Amer. Assoc. of Cost Engineers Class 3/2)	Detailed	10–20	A complete process design Engineering design usually 20–40% complete Project construction schedule Contractual conditions and local labor conditions	Firm quotations adjusted for possible price escalation with some critical items committed	Firm unit cost quotes (or current billing costs) based on detailed quantity take-off	Estimated man-hour units (including assessment) using expected labor rate for each job classification		
				Pertinent taxes and freight included				
Class IV (Similar to Amer. Assoc. of Cost Engineers Class 1)	Finalized	5–10	As for Class III, with engineering essentially complete	As for Class III, with most items committed	As for Class III, with material on approximately 100% firm basis	As for Class III, some actual field labor productivity may be available		
Class 1)	Viass 1) Viass 1) Expressed as a percentage of the total of process capital, engineering and home office fees, and process contingency							

Task Force Illustration (1)

• While details will vary from project to project, an example of needed information on project scope is shown here in the form of a "checklist" for a reference coal-fired plant without CCS ...

- Plant size (net power output, MW)
- Plant location (country, region of country, or state)
- Site characteristics
 - Plant elevation/atmospheric pressure
 - Average ambient dry/wet bulb temperatures
 - Minimum/maximum design temperatures
 - Relative humidity
 - Site topography (i.e., assumed to be clear and level?)
- Generation technology (IGCC, PC, CFB, oxy, etc)
 - Specific technology features
 - Gasifier type (if igcc)
 - o Steam conditions (sub, SC, USC, etc.)
 - o Condenser pressure
- Fuel characteristics
 - Coal ultimate analysis (including HHV and LHV)
 - Coal ash analysis (including ash fusion temperatures)
 - Coal delivery method (rail, barge, truck, conveyor, etc)
 - Natural gas availability (near pipeline?)
 - Other start-up fuel source (i.e., distillate, etc)
- Air Emission Limits (SO₂, NO_x, particulates, mercury)
- Indoor or outdoor construction?
- Makeup water source and typical quality
- Cooling water system (mechanical draft cooling tower, hyperbolic, once-through, air cooled, hybrid, etc., plus cycles of concentration)
- Waste water disposal method (zero liquid discharge required?)
- Electrical system
 - Transmission system interconnect voltage
 - Switchyard included?
 - Transmission line included? If so, how long?
- Material storage assumptions
 - Coal pile (days of storage?)
 - FGD Sorbent (days of storage?)
 - Ash/FGD solids (days of on-site storage)
- Any special noise limitations?

Task Force Illustration (2)

- ... and here for the CO₂ transport and storage components of a CCS project using a pipeline and geologic storage.
- In all cases, <u>clear and</u> <u>complete reporting of</u> <u>assumptions is the</u> <u>essential requirement</u>

General Specifications:

- CO₂ design flow rate and capacity factor
- CO₂ purity (including maximum concentrations of key impurities such as water, noncondensable gases, O₂, HSE hazardous compounds such as H₂S, CO, SO_x, NO_x)
- CO₂ pressure and maximum temperature at plant gate

Pipeline Transport (onshore):

- Transport distance
- CO₂ pressure and temperature at storage site well-head
- Routing
- Topography along the route (e.g. bedrock, flat or hilly terrain)
- Numbers of road and river crossings (e.g. micro-tunneling)
- Maximum allowed CO₂ pressure
- Pipeline diameter, steel quality and wall thickness
- Internal and external corrosion protection
- Booster compressors and/or pumps
- Rights of way (e.g. difference between agriculturally used area, sparsely populated or uninhabited areas and populated areas)
- Pigging

Geologic Storage Site (onshore):

- Type of geologic storage site (e.g., saline aquifer, depleted oil/gas field, EOR?)
- Design life (years)
- Initial screening of multiple sites followed by characterization of the selected site(s) needed to establish/estimate:
 - Field/reservoir capacity (Mt stored CO₂)
 - Number of injection wells needed
 - Well depth
 - Geographic extension
 - Legacy wells (if depleted oil/gas field)
 - Number of new exploration and observation wells
- Well class (e.g., in the U.S., Class VI for storage and Class II for EOR)
- Requirements for monitoring, measurement and verification (MMV) during periods of site characterization, injection/operation, and post-closure (e.g., as specified in the U.S. for well Class VI) including:
 - Legal/regulatory requirements for objectives of monitoring (as in EU), as well as more specific requirements, e.g., for MMV technologies (2D, 3D, 4D seismic, monitoring wells), their spatial extent and density, and frequency of measuring campaigns.
 - Requirements imposed by industrial stakeholders
- Decommissioning of injection wells and monitoring wells (after post-closure)
- Liability transfer (to authorities after approved closure of operation)

Defining Nomenclature and Cost Categories

E.S. Rubin, Carnegie Mellon

Elements of Capital Cost

 As documented at last year's workshop, while many terms are similar, we also found significant differences both in terminology and the items included ...

Table A2. Cap	ital cost elements b	y cost category		
Cost Category	DOE/NETL	EPRI	IEA-GHG	ZEP
BEC	Process equip't	Total constructed	Direct materials	Items not identified
	Trooms of a b	costs of all onsite processing and generation units broken into:		
	Supporting facilities Labor	Direct field labor Factory equipment Field materials & supplies	Construction costs Other costs	
EPC cost	EPC services	Engineering and home office overhead including fees	EPC services	Percentage only identified
Contingencies				
a	Process Project	Process Project	Project Process	Items not identified
Owner's costs	Pre-paid royalties Financing costs	Pre-paid royalties	Feasibility study costs Surveys Land purchases Permitting Financing costs	Items not identified
	Inventory capital (such as fuel storage, consumables & spare parts)	Inventory capital (such as fuel storage and consumables)	Working capital (Includes inventories of fuel and chemicals)	
	Pre- production/startup costs	Start-up (or pre- production) costs	Start-up costs	
		Initial charges for catalysts and chemicals	Initial charges for catalysts and chemicals	
	Other owner's cost		Other misc. costs	

Elements of Total Capital Cost

... as well as differences in how various cost groups are aggregated to determine the total cost reported

DOE/NETL	EPRI	IEA-GHG	ZEP
BEC	BEC	Installed costs	
+	+	+	
EPCC	EPCC	EPCC	EPCC
+	+	+	+
			Owner's costs
Contingencies	Contingencies	Contingencies	(includes
			contingencies)
Total Plant Cost	Total Plant Cost	Total Plant Cost	
+			
Owner's costs			
Total Overnight Cost			Total Investment Cost
+	+	+	
IDC	AFUDC	IDC	
+	+		
escalation	escalation		
	Total Plant Investment		
	+	+	
	Owner's costs	Owner's costs	
Total As-Spent	Total Capital	Total Capital	
Capital	Requirement	Requirement	

E.S. Rubin, CMU

Task Force on CCS Cost Methods

Task Force Recommendation

- We nonetheless found that with only a few changes in each of the four costing methods, the "common language" and costing methodology we sought could indeed be achieved!
- Here is what it would look like for capital costs ...

Capital Cost Element to be Quantified	Sum of All Preceding Items is Called:
Process equipment	
Supporting facilities	
Labor (direct & indirect)	1
	Bare Erected Cost (BEC)
Engineering services	
	Engineering, Procurement & Construction (EPC) Cost
Contingencies: - process	
- project	
	Total Plant Cost (TPC)
Owner's costs:	
 Feasibility studies 	
- Surveys	
- Land	
- Permitting	
- Finance transaction costs	4
- Pre-paid royalties	4
- Initial catalyst & chemicals	-
- Inventory capital	4
- Pre-production (startup)	4
- Other site-specific items	
transmission interconnects	
beyond busbar economic	
development incentives, etc.)	
	Total Overnight Cost (TOC)
Interest during construction	
Cost escalations during] [
construction	
	Total Capital Requirement (TCR)

Task Force Recommendation (con't.)

• ... and here's what it would look like for plant operating and maintenance (O&M) cost items

Operating & Maintenance Cost Item to be Quantified	Sum of All Preceding Items is Called:
Operating labor	
Maintenance labor	
Administrative & support labor	
Maintenance materials	
Property taxes	
Insurance	
	Fixed O&M Costs
Fuel	
Other consumables, e.g.: - chemicals - auxiliary fuels - water	
Waste disposal (excl. CO ₂)	
CO_2 transport	
CO ₂ storage	
Byproduct sales (credit)	
Emissions tax (or credit)	
	Variable O&M Costs

Quantifying CCS Cost Elements

E.S. Rubin, Carnegie Mellon

The Devil is in the Details

• Even with a common nomenclature and set of cost elements, different methods of quantifying each item will still result in different costs.

- We compared the methods used by the four organizations and found many similarities as well as some differences
- We did not think it fruitful to seek recommendations or guidelines for all cost items, especially since many key items are opaquely "specified by the contractor"
- On the other hand ...

Process Contingency Guidelines

• Items like process contingency cost do merit guidelines, which can help in cost estimation for new CCS processes

Technology Status	Process Contingency (% of Associated Process Capital)		
New concept with limited data	40+		
Concept with bench-scale data	30-70		
Small pilot plant data	20-35		
Full-sized modules have been operated	5-20		
Process is used commercially	0-10		

Source: EPRI, AACE

Overall, we again emphasize the importance of full and detailed reporting to reveal sources of cost differences

Calculating Cost of Electricity and Cost CO₂ Avoided

Cost of Electricity (COE)

$COE (\%/MWh) = \frac{(TCC)(FCF) + FOM}{(CF)(8760)(MW)} + VOM + (HR)(FC)$

- TCC = Total capital cost (\$)
- FCF = Fixed charge factor (fraction)
- FOM = Fixed operating & maintenance costs ($\frac{y}{yr}$)
- VOM = Variable O& M costs, excluding fuel cost (\$/MWh)
- HR = Power plant heat rate (MJ/MWh)
- FC = Unit fuel cost (\$/MJ)
- CF = Annual average capacity factor (fraction)
- MW = Net power plant capacity (MW)

COE is Calculated and Reported in Different Ways

- "Revenue requirement" method
- "Discounted cash flow" method
- Levelized COE
- First-year COE
- Constant (real) dollars
- Current (nominal) dollars

Poor understanding of these differences and their impact is a major sources of confusion regarding power plant and CCS costs

Choice of method and assumptions also can affect the year-by-year COE profile

Task Force Conclusions

- The different approaches to COE calculation reflect different perspectives related to investment decisions, regulatory activities and other purposes of cost analysis
- The analysis perspective often is not conveyed in CCS cost studies
- For purposes of technology comparisons, both methods will identify the lowest-cost option if used consistently
- Greater attention must be paid to the full reporting of costrelated assumptions and context for the analysis

Cost of CO₂ Avoided

• <u>Cost of CO₂ Avoided</u> (\$/t CO₂) = $\frac{(COE)_{ccs} - (COE)_{reference}}{(t CO_2/MWh)_{ref} - (t CO_2/MWh)_{ccs}}$

- This is the measure most frequently used to quantify the cost of CCS
- It should (but often does not) include the full cost of CCS, i.e., capture, transport and storage (because emissions are not avoided unless/until the CO₂ is sequestered)
- It is a relative cost measure that is very sensitive to the choice of reference plant without CCS

Cost of CO₂ avoided is sensitive to assumed reference plant w/o CCS

E.S. Rubin, CMU

Task Force on CCS Cost Methods

What's the Question?

- How much will CCS add to the cost of a particular plant, or plant type?
- What carbon tax would it take for CCS to be less costly for a particular plant?
- What is the least-cost option to meet a strict carbon constraint for a new fossil fuel plant being planned?

Different questions require different reference plants when calculating cost of CO₂ avoided

Cost studies that report avoidance cost need to clearly frame the question being address Guidelines for CCS Cost Reporting

Task Force Guidelines

 The Task Force has developed a series of "checklists" to suggest the information that should be given in:

- Technical reports
- Journal/conf. papers
- Presentations

Information Needed	Presentations			
Power plants without CO ₂ capture (reference/baseline plants)				
Fuel type (class of hard coal, lignite, gas)	X			
Power plant type (e.g. PF, BFB, CFB or NGCC)	Х			
Plant capacity (MW electric)				
- Gross (to define boiler or gas turbine size class)	Х			
- Net	Х			
Net electric efficiency and/or heat rate (state if based on LHV or HHV)	Х			
CO ₂ emissions (per MWh net electricity or per MWh fuel; state if LHV or HHV)	Х			
In addition for power plants with CCS				
Type of power plant CO ₂ capture; e.g. post-combustion,	x			
oxy-combustion, IGCC with pre-combustion				
Capture technology (e.g. MEA, advanced amine, chilled	Х			
ammonia, Selexol, solid absorption/desorption process, etc.	-			
Captured CO ₂ per MWh net electricity or per MWh fuel (state	X			
II LHV or HHV) or "capture rate" (% of produced CO_2)				
Capital costs				
Type of plant, e.g. first-of-a-kind, N th -of-a-kind	X			
Year, currency (to enable later updates and comparisons				
between studies from different years, using suitable	Х			
plant/equipment cost indices)				
Contingencies (sum of process and project contingencies)	Х			
Resulting "Total Overnight Cost"	Х			
- Construction cost escalation rate (if applied)	X			
O&M costs (excluding CO ₂ transport & storage)				
CO ₂ emissions cost per tonne (if included)	Х			
CO ₂ transport & storage costs				
Overall net cost per tonne of CO ₂ stored, with breakdown into	v			
transport and storage (if available).	Λ			
Levelized cost of electricity				
Method/approach used; also state if calculation uses real				
(constant money values) or nominal (current money values)	Х			
Interest rate/discount rate/WACC: also state if real or nominal	Х			
Inflation and other price escalation rates (if applied)	X			
Economic lifetime	X			
Load factor/equivalent full load operation hours	x			
- Fuel prices per GI or MWh fuel (state HHV or LHV)	X			
CO ₂ avoidance cost				
State and define reference plant case	v			
state and define reference plant case	Δ			

Task Force Guidelines

• The complete checklists are in the draft report

Information Needed	Reports	Papers	Presentations
Power plants without CO₂ capture (reference/base line plants)			
Battery limits	Х		
Fuel type (class of hard coal, lignite, gas)	Х	Х	Х
- Moisture and ash contents	Х	Х	
- LHV and HHV. (state "as received", dry matter, dry	v	v	
and ash free).	Λ	Λ	
- Definition of LHV	X		
Power plant type (e.g. PF, BFB, CFB or NGCC)	Х	Х	Х
- Steam parameters (pressures/temperatures)	X	Х	
- GT-class (e.g. F-class, H-class)	X	Х	
- Gasifier type (for IGCC)	X	Х	
Plant location type (immediate to port, inland)	X	Х	
 Ambient conditions (ISO, other conditions) 	X	Х	
Cooling water (cooling tower or once through sea/lake/river	x	x	
water)		24	
Plant capacity (MW electric)			
- Gross (to define boiler/GT size class)	X	Х	X
- Net	X	Х	Х
Net electric efficiency and/or heat rate (state if based on LHV or HHV)	Х	Х	Х
CO ₂ emissions (per MWh net electricity or per MWh fuel; state if LHV or HHV)	Х	Х	Х
Environmental requirements anticipated.	Х		
In addition for power plants with CO ₂ capture			
Plant capacity (is the boiler/GT capacity or the gross or net output the same as the reference plant)	Х	Х	
Type of concept for power plant with CO ₂ capture; e.g. post-combustion, oxy-fuel, IGCC with pre-combustion	Х	Х	Х
Capture technology (e.g. MEA, advanced amine, chilled ammonia, Selexol etc or solid absorption/desorption process	Х	Х	Х
Delivered captured CO ₂ :			
- Pressure, temperature	X	X	
 Purity requirements anticipated (at least state if sufficient for transport in carbon steel pipelines or ships) 	Х		
Captured CO_2 per MWh net electricity or per MWh fuel (state if LHV or HHV), or "capture rate" (% of produced CO_2)	Х	Х	Х

We also have some examples of "Bad" Practice ...

... and "Good" Practice for information in graphs and tables

Bituminous coal: \$1.6/GJ (LHV), Gas: \$7/GJ (LHV**)**, Annual capital charge factor: 0.11 CO2 transport + storage: \$6/t, 90% load factor, Constant \$, 2007

E.S. Rubin, CMU

Next Steps

We look forward to your:

- Comments and feedback on the draft report and its usefulness to the CCS community
- Thoughts on additional needs to improve the development and understanding of CCS costs (e.g., for emerging technologies, relative to other mitigation options, etc.)
- Suggestions for dissemination and followup

Thank You

rubin@cmu.edu

E.S. Rubin, Carnegie Mellon

EPEI ELECTRIC POWER RESEARCH INSTITUTE

CCS Cost Workshop

Session 1: CCS Costing Methods and Measures Respondent #1

Ronald L. Schoff

Sr. Project Manager

CCS Cost Workshop – Palo Alto, CA April 25, 2012

Opening Thoughts

Noble Effort

Good Start

Common Methods Useful

Reporting Standards Helpful

Design Basis Characteristics

	Study #1	Study #2	Study #3
Fuel	Sub-Bit	Sub-Bit	Sub-Bit
Heating Value (Btu/lb, HHV)	8,220	8,340	8,560
Air Separation Unit	Cryogenic	Cryogenic	Cryogenic
Gasifiers	Siemens	Siemens	Siemens
Acid Gas Removal	Selexol	Selexol	Selexol
Gas Turbines	GE 7F	GE 7F	F Class
Elevation (feet)	2,400'	600'	3,500'
Condenser Backpressure (in. Hg)	1"	2"	1.4"

Same Plant, Different Locations

Performance Characteristics

	Study #1	Study #2	Study #3
Gross Power (MWe)	677	664	635
Auxiliary Power (MWe)	221	196	189
Net Power (MWe)	456	468	446
Thermal Input (MWth)	1,580	1,570	1,455
Net Plant Efficiency (%, HHV)	29%	30%	30.5%
Carbon Capture Rate	92%	85%	90%

Slight Differences in Designs Cause Divergence in Performance

Cost Estimate / Economic Assumptions

	Study #1	Study #2	Study #3
Location	US-GC	US-NW	US-MW
Dollar Year Basis	1Q 2010	1Q 2010	2Q 2007
Coal Price (\$/ton)	24	33	15
Operating Labor Rate (\$/yr)	100	65	98
Engineering Cost (% of BEC*)	15%	10%	9%
Process Contingency (new eq.)	0%	0%	5%
Project Contingency	20%	10%	17%

Need to Adjust Each Parameter for Comparison – Which to Pick?

Cost Estimate Results

	Study #1	Study #2	Study #3
Total Plant Cost (billion \$)	2.45	1.81	1.50
Equipment	0.8	0.7	0.8
Bulk Materials	0.7	0.3	<0.1
Labor	0.3	0.3	0.2
Specific Plant Cost (\$/kW)	5,350	3,880	3,370
Air Separation Unit	423	460	571
Gasification Island	1,281	1,035	964
Syngas & CO ₂ Processing	1,252	700	603
Power Block	1,333	660	625
Balance of Plant	1,065	1,028	609

Vast Differences Starting to Appear – Bulks & Some Plant Units

Cost Estimate Results

Cost/Economic Assumptions Adjusted to Common Basis

	Study #1	Study #2	Study #3
Total Plant Cost (billion \$)	2.45	1.81	1.50
Bare Erected Cost (billion \$)	1.8	1.3	1.1
Equipment	0.8	0.7	0.8
Bulk Materials	0.7	0.3	<0.1
Labor	0.3	0.3	0.2

\$0.7B difference escalates to a **\$1B** difference with engineering and contingency included

Wide Spread in Total Plant Cost - from Bare Erected Cost Δ

Cost Estimate Results

Cost/Economic Assumptions Adjusted to Common Basis

	Study #1	Study #2	Study #3
Specific Plant Cost (\$/kW)	5,350	3,880	3,370
Air Separation Unit	423	460	571
Gasification Island	1,281	1,035	964
Syngas & CO ₂ Processing	1,252	700	603
Power Block	1,333	660	625
Balance of Plant	1,065	1,028	609
Cost of Electricity (\$/MWhr)	\$145	\$117	\$101
			X

Even with Common Basis, there is a ~45% Spread in COE Values

Closing Thoughts

- I do this every day for a living, and this was difficult
 - How is a stakeholder with little or no experience supposed to figure out what to do with this data?
- Having the same plant configuration and fuel is not enough
 - Differences in design practice for EPC and R&D Orgs.
- None of the cost or economic assumptions for the 3 cases were the same
 - Merging to similar basis did not solve the problem
- The issue is more pronounced for new technologies for which there is little industry experience and data to use

Together...Shaping the Future of Electricity

Methodology for CCS cost estimate The perspective of an E&C company

CCS cost workshop, 25th-26th April 2012 – EPRI, Palo Alto (CA), USA

R. Domenichini – Director Power Division Foster Wheeler Italiana

© 2012 Foster Wheeler. All rights reserved

Methodology for CCS cost estimate - The perspective of an E&C company

CCS cost estimate

Cost estimate is project specific:

- Client, Location, country...
- CO₂ capture technology selected
- Storage characteristics and distance
- Based on:
 - ✓ Performance calculation
 - ✓ TIC estimate
 - ✓ O&M costs estimate
 - ✓ Financial analysis to define COE (Cost Of Electricity)
 - \checkmark COAC (Cost Of Avoiding CO₂) calculation

Performance

• Plant design

(Feedstock characteristics and product requirements, in particular CO₂ quality)

- Site conditions
- Performance calculations in different operating conditions
 - Process simulators
 - Licensors' and Vendors' data

TIC (Total Investment Cost) Estimate

Includes:

- Direct materials (equipment and bulk materials)
- Construction (site preparation, civil works, mechanical and I&E erection)
- Other costs (temporary facilities, solvents, catalysts, etc.) and EPC services
- Owner costs, Technology fees, Contingencies

A different Estimate class

- Class 1 FEED +/-10% accuracy
- Class 4

•

Class 5 J typical for a Feasibility Study

Means a different engineering effort to support the Estimate

TIC Estimate Methodology for a Feasibility Study/Conceptual Design

Technical basis

- Sized equipment list (based on plant modeling)
- Vendor budgetary offers for equipment and Package Units (f.i. ASU, Coal preparation, PSA, SRU)
- Process Flow Diagrams (up to class 4 estimate accuracy) / P&IDs (for a more accurate estimate class)

TIC evaluation using

- Aspen[®] Capital Cost Estimator 7.3.2
 - Aspen database yearly updated, including direct material and construction costs, models to evaluate interconnecting, I&C, electrical equipment...
 - Statistical factors for EPC services, owner costs, temporary facilities, contingency
 - Application of correction factors for site conditions and specific plant characteristics
- Foster Wheeler Database and experience
- Adjustment of Inhouse data based on capacity, site conditions, escalation (year), plant location (erection)

Operating and Maintenance costs

Coal cost. Yearly trend (average) - GME newsletter

- Feedstocks (Coal / Natural Gas)
- CO₂ emission (carbon tax)
- Fluxant, Chemicals, Catalysts, Solvents, Water...
- Cost of CO₂ transport and storage?

- Fixed costs [€/y]
 - Maintenance
 - Direct labour
 - Administrative and general overhead

Strongly affected by market trend and plant location

© 2012 Foster Wheeler. All rights reserved 6

Financial model

Main financial parameters:

- Discount rate
- Years of plant operation
- Depreciation period
- Inflation rate
- Financial leverage (debt / equity)
- Loan rate and duration
- Taxation

(*) Δ calculated with respect to the plant w/o CCS

FOSTER WHEELER

Pre-combustion capture – FW references

IGCC plants in Italy (w/o capture)

- ISAB Energy Asphalt IGCC, 530 MWe + 20,000 Nm³/h H₂
- api Energia VVR IGCC, 288 MWe
- SARAS (Sarlux) VVR IGCC, 550MWe + 40,000 Nm³/h H₂

FW role EPC LSTK EPCm (plant improvement) Consultancy services

© 2012 Foster Wheeler. All rights reserved

Pre-combustion capture – FW References

FEEDs (TIC estimate +/-10%)

FOSTER WHEELER

- ✓ PIEMSA VVR IGCC, 900 MWe, w/o capture
- ✓ DOOSAN Coal IGCC, 300 MWe, w/o capture
- ✓ TATARSTAN Petcoke IGCC, 235 MWe, w/o capture
- ✓ DF1 Project NG ATR+CCU, 475 MWe, w capture
- ✓ HPAD Project NG ATR+CCU, 400 MWe, w capture

More than 40 Feasibility studies with and w/o CCS, f.i.

- EPRI Engineering and Economic Assessment of Integrated Gasification Combined Cycle Coal Power Plants for Near-Term Deployment
- ➢IEA GHG R&D 7 feasibility studies on CCS since 2003

FW is manufacturer of large USC PC and SC CFB boilers

FOSTER WHEELER

© 2012 Foster Wheeler. All rights reserved 10

Oxy-combustion process - FW References

FW Flexi-Burn® Oxy-CFB

- ✓ Supported by European Energy Program for Recovery CIUDEN Technology Development Plant Layout
- CIUDEN Technology Development Plant (30 MWt Oxy-CFB) testing on local anthracite and blends of anthracite/petcok e
- ✓ OXY CFB 300 FEED in progress

Recent Feasibility Study - Veolia Environnement Recherche et Innovation (VERI) Oxy-combustion CHP generation plants (both revamping and new units)

© 2012 Foster Wheeler. All rights reserved

CO₂ compression - FW References

FEED (+/-5% TIC Estimate) - ARCELORMITTAL ULCOS Project - Steel Making Facilities

- ✓ CO₂ recovery from a BLAST furnace
- \checkmark CO₂ injection into a deep saline acquifer
- ✓ NER 300 application submitted

Feasibility Study - IEA GHG R&D Programme Optimisation of CO₂ compression in CCS system

- Technical and economical evaluation of compression strategies (for pre, post and oxy-combustion)
- ✓ Assessment of CO₂ compressor characteristics
- Database of technical and economical offers received from main CO₂ compressor vendor

FW Recent Evaluation of Investment Cost, COE and COAC

CO ₂ Capture technology	Specific Investment Cost (*)	Cost Of Electricity	Cost Of Avoiding CO ₂
	[\$/kWe]	[cents\$/kWh]	[\$/t]
USC PC w/o CO2 capture (Reference plant)	1900-2100	6 – 9	-
IGCC with pre-combustion capture	3600-3800	10 - 16	75 – 110
USC PC with post-combustion capture	3300-3500	9 – 15	60 - 90
Oxy-combustion power plant	3700-3900	10 - 16	70 – 110

(*) Based on a Class 4 TIC estimate accuracy I

Cost Of Avoiding CO₂ (COAC) - Conclusions

Wide range of variation depending on:

- ✓ Global market fluctuations
- ✓ Country (fuel costs, carbon tax, construction costs...)
- ✓ Plant location (infrastructures, cost of CO₂ transport, construction costs....)
- \checkmark Specific fuel, product, CO₂ characteristics, plant and site conditions
- Financial parameters adopted
- ✓ Reference plant for COAC calculation (USC PC plant w/o CO_2 capture?)

Need of reference values for some parameters to evaluate normalized and comparable COAC

Thank you

www.fwc.com www.fosterwheeler.it rosa_domenichini@fwceu.com

© 2012 Foster Wheeler. All rights reserved

Understanding the Costs of CCS Demonstration Projects

Howard Herzog MIT April 25, 2012

Howard Herzog / MIT Energy Initiative

Demonstration Projects

- Lack of financing is the number one reason that demonstration projects fail to go forward
 - Are costs too high?
 - Are financing sources too limited?
 - Is it a combination of both?

The Billionaires Club

- Longannet (UK)
 - 363 MW post-combustion retrofit
 - £1 billion from UK government not adequate (£1.34 billion from FEED)
 - ~ £3,700/kW (\$6,000/kW)
- FutureGen (US)
 - 200 MW oxy-combustion retrofit
 - It appears that \$1billion from US government may not be adequate
 - Note that FutureGen Alliance members will contribute several hundred million dollars
 - ~\$5,000/kW + alliance contribution
- Mongstad (Norway)
 - New amines + chilled ammonia pilot plants
 - $\sim 100,000 \text{ tCO}_2/\text{yr}$ ($\sim 20 \text{ MW equivalent}$)
 - Estimated cost of NOK 5.77 billion
 - ~NOK285,000/kW (\$50,000/kW)

Installed Costs for 550 MW net generation and CO₂ capture facility (FOAK from GCCSI 2011 update)

RETROFIT	COST (in \$/kW)
Peterhead (hydrogen from natural gas)	2840
Antelope Valley (coal-fired)	2392
AEP Mountaineer (coal-fired)	2843
Longannet (supercritical)	5835
Plant Barry	4375
Average	3657
GCCSI Estimate	~2000 + T&S

COAL-FIRED	COST (in \$/kW)	IGCC	COST (in \$/kW)
Janschwalde	8065	Goldenbergwerk	9091
Kingsnorth	8330	Sweeny Gasification	6003
(supercritical)		ZeroGen	10616
Average	8189	Taylorville	5814
GCCSI Estimate ~4500 +T&S Average		Average	7881

Howard Herzog / MIT Energy Initiative

GCCSI Estimate	~4600 + T&S
Average	7881
Taylorvine	5014

Longonnet FEED Study

Chain Segment (in £m)	Pre-FEED	Post-FEED
Capture	559.8	656.5
Transport	198.7	281.2
Storage	318.7	207.8
Total	1077.2	1145.5
Risk & Contingency	102.8	194.8
Total Project Capex	1180.1	1340.3
Range	857 – 1719	1200 - 1519

Questions

- The reported costs of CCS demos appear to be significantly higher than the estimates published in CCS cost studies
 - Is this reality or just perception?
 - What are the reasons for the differences we see?
- Once we understand the costs of CCS demos, what does that tell us about nth plant costs?
 - What are key components of FOAK costs?
 - Can we quantify FOAK costs?

Contact Information

Howard Herzog Senior Research Engineer

Massachusetts Institute of Technology (MIT) Energy Initiative Room E19-370L Cambridge, MA 02139

Phone: 617-253-0688 E-mail: hjherzog@mit.edu Web Site: sequestration.mit.edu

Howard Herzog / MIT Energy Initiative

Operating/ Advanced Devel	opment CUMULATIVE	/ULATIVE CAPTURE POTENTIAL	
PlannedCancelled	High-purity industrial/natural sources	Power generation	
EOR/EGR storage	•Weyburn (Canada) •La Barge (USA) *Masdar (UAE) *Leucadia (USA) *Port Arthur (USA) *Ordos (China) *Swan Hills (Canada)	*Rotterdam-ROAD (Netherlands) *Magnum (Netherlands) *Bow City (Canada) *Boundary Dam (Canada) *Daqing (China) *HECA (USA) *TCEP (USA) *Trailblazer (USA) *WA Parish (USA) *Kemper County (USA) *Don Valley (UK) •Peterhead (Scotland) •Antelope Valley (USA)	
STORAGE POTENTIAL	*Sleipner (Norway) *In Salah (Algeria) *Snohvit (Norway) *Archer Daniels Midland (USA)	*GreenGen (China) *Porto Tolle (Italy) *Belchatow (Poland) *Compostilla (Spain) *FutureGen (USA) *Project Pioneer (Canada) *Ferrybridge (UK) *Mongstad (Norway) *Karsto (Norway)	
Deep saline/deplete d gas field	*Wasatch Plateau (USA) *Quest (Canada) *Fort Nelson (Canada) *Gorgon (Australia) •Barendrecht (Netherlands)	*Janschwalde (Germany) *Goldenbergwerk (Germany) *Taylorville (USA) *AEP Mountaineer (USA) *Sweeny Gasification (USA) *ZeroGen (Australia) *Logannet (UK) *Kingsnorth (UK) *Southern Company CCS Demonstration (Plant Barry) (USA)	
d gas field storage	/	Demonstration (Plant Barry) (USA)	

EPRI CCS COST WORKSHOP 25-26 April 2012

Australian National Low Emissions Coal Research and Development

Scoping & Estimation of Total Project Investment Cost Australian Experience

Professor Chris Greig Director, UQ Energy Initiative

Context

A number of "early mover" CCS proposals associated with low emissions coal utlisation have been studied in Australia:

- Cost estimates have grown significantly from first concept study; and
- Cost estimates have been significantly higher than published benchmarks.

This presentation reflects lessons from ZeroGen but is relevant to most others.

- ZeroGen had more history and had completed more scoping, engineering and associated project studies than others.
- But lessons are consistent.

Summary of Australian Experiences

Scope definition is critical to all estimates (capex & opex)

- Many project estimate benchmarks lack scope definition.
- Scope varies significantly according to site, project organisation and available infrastructure.

Adequate Engineering is essential to achieve estimate integrity

• Limited reference projects for IGCC and none for IGCC with CCS.

Jurisdiction of project impacts on investment cost & time

• Regulation, construction costs and productivity vary widely.

Basis of estimates [scale, time, location, exchange rate...]

An "Estimate" is always uncertain (one possible cost outcome)

• Must always define the level of uncertainty (eg P₅₀ versus P₈₀)

The ZeroGen Experience

Stage of Project Development

- ZeroGen had completed a Scoping Study followed by a Prefeasibility Study, at which point the project was abandoned.
- No option considered to have even a remote chance of being taken to FID.

ZeroGen's Total Investment Cost Estimate

525 MW Gross IGCC / 391 MW Net output

Integrated 65% CO₂ Capture, Transport and Storage

Main Project Cost Area	AUD billions	% Total
ZG Owner's Costs	\$ 0.30	5%
Enabling Works	\$ 0.62	11%
Power Plant incl. Balance of Plant	\$ 3.90	68%
Carbon Transport & Storage	\$0.80	14%
Operations Readiness & Start-up	\$0.14	2%
Total Base Cost Estimate	\$5.76	100%
Direct project contingency	\$ 0.52	9%
Escalation	\$0.65	11%
Total Fully Load Capital Cost (TIC)	\$6.93	

TIC is dominated by Power Plant with Capture

In CCS projects, Carbon Storage dominates the development risk

BUT Power with Carbon Capture dominates the capital cost

• Power plant with capture and associated costs represent 86% of the total TIC (after approximate allocation of indirects & contingency)

In the development phase, >80% of the pre-FID investment will generally be associated with identifying, characterising and proving-up the storage resource

• Perhaps not for depleted oil & gas reservoirs or EOR applications where a very large existing sub-surface database is available.

ZeroGen's TIC Estimate grew substantially

Scoping Estimate (\$4.3 Billion)

- FX Variation
- Escalation
- Design Growth
- Au-US Productivity
- Infrastructure Scope
- Forward Escalation

Reflections on the Estimate Growth

At Scoping Study, a heavy reliance on technology providers for the core EPC scope \rightarrow Major Design Growth

- Scoping Study budget does not allow for significant engineering investment
- Vendors in marketing mode and overstated the level of maturity of design & estimates
- Limited industrial reference projects in low emissions power, for IGCC and none for IGCC with CCS
- Vendors tended to *align* budget estimates to the published benchmarks

Many of the <u>items outside the EPC scope are factored</u> on the Equipment or EPC scope

- Owner's costs, enabling infrastructure, etc., are typically factored, leading to:
- Optimism in base EPC estimates are compounded in the TIC estimate

Design Growth > \$800 M

Design growth represents the increase in EPC estimates arising from engineering development & maturity, for example:

- **CO₂ Specification** increased from 95% (unstated assumption) to 99.7%
- Dry Cooling required in Australia's arid climate
- Site elevation and high ambient temperatures reduce gross power output.
- Above factors + more rigour in mass & energy balances leads to increased parasitic power loss
- Energy Recovery initiatives add scope
- Flowsheet complexity increased as plant integration studies, start-up & shut-down protocols, etc., add scope
- Increased scope clarity from technology providers identifies significant EPC exclusions which must be scoped & delivered by others.
- Design growth also affects Pre-FID costs to go for Feasibility & Financial Close activities.

Significant EPC Scope excluded from Supplier Estimates

Where and Who is developing can affect the cost

Project jurisdiction has a major impact on TIC outcomes

- Most benchmark costs, upon which vendor representations are relying are Gulf Coast or European Seaboard as a reference basis.
- Major impacts on scope & enabling infrastructure, productivity, etc.

Project organisation maturity influences associated Owner's cost

New special purpose companies like ZeroGen, lack depth of human resources and systems in hydrocarbons and power industries:

- Building the operations management systems, and
- Recruiting, training and relocation / accommodation of operations team can be a large cost.
- Note experience & track record in both hydrocarbons & power is critical.

Enabling Infrastructure & Skills Shortages ... unique to Australia in current era > \$800 M

Australia experiencing a booming engineering & construction sector in support of historically significant investment in resources & energy.

 Engineering & craft labour in very short supply leads to increased cost & reduced productivity (~ \$300 M)

[> 1.7 x US Gulf Coast productivity adj. costs]

- Project regulatory systems facing bottlenecks
- Requirement to fly-in / fly-out workers & build high quality construction camps to accommodate itinerant workforce (~ \$180 M incl. in Enabling Infrastructure)

Large scale IGCC with CO₂ capture equipment requires importation of very large volume, heavy items + remote construction site facilities

 Requirement for permanent and temporary upgrades in port facilities, roads, power transmission etc. (~ \$330 M)

Estimates progress from "Optimistic" to "Not to Exceed" adds > \$1,100 M

In the early phase of development, Project Owners / <u>Developers are in</u> <u>"promotion mode"</u>

- Most large scale CCS opportunities are competing for subsidies; and so
- Optimism with understatement of costs and risks is evident.

As projects progress through development, and towards FID, reality bites.

Early mover Demonstrations will rely heavily on capital grants & subsidies to enable FID with limited balance sheet resilience

- Grant **funds tend to be capped** (same for strategic equity)
- **Prudent to use P₈₀ or P₉₀ estimate to assure completion**
- **Contingency** estimates need to be appropriate
- Conservative escalation to nominal time of build costs (Australia high)

in ZeroGen case (2012 - 2016)

Capital Estimates flow to Operating cost estimates and LCOE

TIC estimates grew with project scope, engineering & design maturity, significantly beyond published benchmarks.

At the Prefeasibility Study, **operating cost estimates** are based at least in part on **Percentage of Plant Costs**

- Plant cost estimates increased, and at the same time;
- Net power output estimates reduced; and
- Plant availability estimates also reduced.
- ➡ Levelised Cost of Electricity increases compounded.

And... Early mover projects require operating subsidy in addition to capital grant...

Summary & Conclusions

Early mover coal fired power with CCS projects face pressure to achieve FID and fail to meet widespread expectations due to:

- Excessive reliance on published benchmarks at scoping stage, with inadequate contingency allowances to reflect uncertainties.
- Optimism combined with competition for "soft funds" leads to understatement of cost & risk.
- Cost escalation through project development as scope & engineering design is matured.
- Project organisation, jurisdiction & site all have a major impacts on direct and indirect elements of TIC.
- Early mover projects often lack balance sheet resilience and so closer to FID, estimates are required to approach "not to exceed" eg., P₈₀ or P₉₀.
- Escalation of operating costs translates to operating costs estimates.
- Similar optimism is often seen in early estimates of plant efficiency.
- These three adverse trends compound in the LCOE estimates.

UNIVERSITY OF QUEENSLAND

Professor Chris Greig Director, UQ Energy Initiative

Phone: +61 7 3364 8831 Email: chris.greig@uq.edu.au Web: www.uq.edu.au/energy

ANLEC R&D

Noel J Simento Managing Director

Phone: +61 2 6175 6400 Email: noel.simento@anlecrd.com.au Web: www.anlecrd.com.au

THANK YOU

Understanding the Cost of Demonstration Projects. Europe Demo CCS Cost Workshop 25th – 25th April, 2012

Clas Ekström, Vattenfall

25th April, 2012 Confidentiality - None (C1)

Vattenfall's Jänschwalde Lignite fired Power Plant South East of Berlin, Germany

Modules Y1, Y2, Y3 Every *module* consists of *2 units* 500 MW el each Every *unit* has 2 *boilers*, 250 MW el each

Overall 3,000 MW el

Y3

New CO₂ Capture Demo

VATTENEAL

Υ

New CO₂ Capture Demo

Post-combustion: 20% of flue gas (50 MW $_{el, net eq.}$) after FGD of existing boiler F2, in Unit F

Planned to start operate 2015/16. Terminated due to impasse in German CCS law.

- The EU-supported CCS demo project was planned to have been operational by 2015/16, and would have demonstrated this climateprotection technology for the first time at a significant power plant scale.
- Due to ongoing impasse in the German CCS law currently insufficient will in German federal politics to implement the European CCS directive -Vattenfall during late 2011 saw itself forced to stop plans for this project.
- Vattenfall announced its termination on 5th December, 2011.
- This presentation is based on extensive planning and engineering work performed until decision to terminate the project.

Oxy-fuel Demo compared to Full Scale plant

		State-of-the-art Power Plant ¹	Oxy-Fuel Full Scale	Oxy-fuel Demo
			Optimised ¹	Unit G
Steam parameters	(bar/°C/°C)	280/600/620	280/600/620	286/600/610
Fuel		Pre-dried lignite	Pre-dried lignite	Pre-dried lignite
Gross output capacity	MW	1 000	1 049	250
Own consumption	MW	80	270	83
Net output capacity	MW	920	779	167
Efficiency (LHV, gross)	%	54	56	53
Efficiency (LHV, net)	%	50	42	36
Specific CO ₂ emission	g/kWh _{net}	804	86	106
CO ₂ capture rate	%	-	90	90
Captured CO ₂	t/h	-	631	169
Full load operating time	hours/a	7 500	7 500	7 700
Investment	M€	1 960	2 570	1 005
Specific investment	€/kW el, net	2 130	3 297	6 016

¹ Vattenfall in-house studies and ZEP CO₂ Capture Cost Study (2009 – 2011)

Post-combustion Demo compared to Full Scale plant

		State-of-the- art Power Plant ¹	Post- combustion Full Scale ¹	Jänschwalde Power Plant F2	Post- combustion Demo 20% of flue gas from F2
Fuel		Pre-dried lignite	Pre-dried lignite	Raw lignite	Raw lignite
Gross output capacity	MW	1 000	859	265	42
Own consumption	MW	80	174	15	10
Net output capacity	MW	920	685	250	32
Efficiency (LHV, gross)	%	53	46	40	32
Efficiency (LHV, net)	%	49	37	38	24
Specific CO ₂ emission	g/kWh _{net}	809	110	933	174
CO ₂ capture rate	%	-	90	-	90
Captured CO ₂	t/h	-	677	-	50
Full load operating time	hours/a	7 500	7 500		7 700

¹ Vattenfall in-house studies and ZEP CO₂ Capture Cost Study (2009 – 2011)

6 Understanding the Cost of Demonstration Projects. Europe Demo | Clas Ekström | 2012.04.25 Confidentiality - None (C1)

VATTENFALL 😂

Oxy-fuel. Efficiencies for Demo vs. Full Scale plants.

Oxy-fuel, net electric efficiencies With pre-drying of lignite

Post-combustion. Efficiencies for Demo vs. Full Scale plants

Post-Combustion CO₂ Capture, net electric efficiencies

8 Understanding the Cost of Demonstration Projects. Europe Demo | Clas Ekström | 2012.04.25

Confidentiality - None (C1)

Oxy-fuel. Investments for Demo vs. to Full scale plants

Oxy-fuel. Specific Investments Year 2010

9 Understanding the Cost of Demonstration Projects. Europe Demo | Clas Ekström | 2012.04.25

Confidentiality - None (C1)

CCS Demo Project

Target: Parallel development for CO₂ capture and storage

Pipeline transport of CO₂ On-shore, dense populated areas Continental Europe

		ZEP CO2 Trans (2009 -	Transport Demo	
Design CO ₂ flow-rate	t/h	333/1 333	333/1 333	300
CO ₂ from capture demo	t/h	-	-	219
Full load operating time	hours/a	7 500	7 500	7 700
Transported CO ₂ ;				
- at design flow-rate	million t/a	2.5/10	2.5/10	2.3
- CO ₂ from capture demo	million t/a	-	-	1.7
Pipeline length	km	10	180	54
Pipeline diameter	mm	305 (12 inches)/	305 (12 inches)/	400 (16 inches)
		508(20 inches)	610 (24 inches)	2 pipes
Investment	M€	12/15	148/226	93

Pipeline CO₂ transport costs

Confidentiality - None (C1)

Costs for Storage of CO₂. Saline Aquifers, On-shore

Field Capacity, Well Injection Rate and Utilisation key specific cost drivers

Summary

Oxy-fuel Demo vs. Optimized full-scale plants:

- Main reasons for higher specific investments for the smaller demo plant;
 - 1) Scale effects
 - 2) Lower power plant efficiency
 - 3) Current ASU performance

Transport and storage of the captured CO₂:

- Capacity and utilisation key specific cost drivers
- For pipeline transport also distance
- For geologic storage also well injection rate (Mt CO₂ /well, year)

clean co,al[™] Project Sask**Power**

Integrated Carbon Capture & Storage Demonstration Boundary Dam Power Station

EPRI CCS Cost Workshop April 24, 2012

Doug Daverne, P. Eng., Manager, BD3 Clean Coal Project

Agenda

- Project Background Economic Factors
 - Regulations
 - Objectives
 - Saskatchewan CO2 EOR experience
- BD3 ICCS Project
 - Scope
 - Cost
 - Economics
 - Current Status

Welcome to Saskatchewan

Greenhouse Gas (GHG) Emissions Reductions

GHG Requirements (discussed to date)

Proposed Federal regulation to limit CO₂ from coal-fired electricity generation:

- Establishes performance standard of 360 420 tonnes CO₂ /GWh ("Clean as Gas")
- To become law in 2012 and applied in 2015
- Existing units must comply when they reach 45 years of age or shut down
- Currently emit approx. 1100+ tonnes/GWh
- BD3 ICCS 90% capture 140 tonnes/GWh

Coal Generation in Canada – The Decline

clean coal Project SaskPower

BD ICCS Demonstration

Key Deliverables:

1) Life Extension - Refurbish Unit 3 to allow an additional 30 years of reliable, safe operation

2) Performance Upgrades - Upgrade Unit 3 criteria emissions control (SOx, NOx) as well as improve efficiency

3) CO₂ Capture Technology – incorporate technology that best meets our overall Corporate objectives – both near and long term

4) Competitive COE – all of the above to be accomplished with a COE at or below that of the next lowest supply option – Nat. Gas CC. Requires a CO_2 sale to EOR off-taker to achieve.

5) In-Service Q1 2014

6) Significant Improvement in Environmental Performance

clean coal Project SaskPower

BD ICCS Demonstration

Why BD3?

1) Valuable Existing Assets

Iowers capital costs = lower cost of electricity

2) Right Size:

1 million tonnes of CO₂ per year matches enhanced oil recovery (EOR) market

3) BD3 reaches major life cycle decision in 2013 –

If no action – default is retirement – 0 MW

4) Applicable to other aging coal fired units

clean coal Project

SaskPower

Saskatchewan Experience in CO₂ Storage

Total Oil Production at Weyburn

- Around 30,000 bbl/day: a 35-year high
- 20,000 bbl/d are due to the CO₂ flood

_TM

CO₂ stored equivalent to removing <u>more than 8 million</u> <u>cars</u> off the road for a year

9

clean coal[™]

BD3 ICCS

BD 3 Repowered

BD3 ICCS

🔓 Sask Power

Boundary Dam Project Capital Cost Breakdown

clean coal Project SaskPower

Progress to Date

- SaskPower is overall project manager
- SO2/CO2 Capture System selected Cansolv Technologies/SNC Lavalin EPC – Competitive process
- Compressor MAN Turbo
- Heat rejection and compression BOP SNC
- Turbine & Generator Hitachi
- Boiler upgrade B&W Canada
- Balance of plant engineering and procurement in progress; approx. 85% of contracts awarded by dollar value

Progress to Date

Schedule

- Power plant rebuild March through August 2013 then start-up – producing power
- CO₂ Capture start-up and commissioning fall 2013
- Full commercial operation Q1 2014

Conclusions

- Preserves coal as a fuel source and maintains fuel mix diversity.
 - Cost of electricity competitive with natural gas.
- Provides information needed for making future decisions.
 - Develops EOR CO₂ buyer market - has significant positive economic impact for the provincial economy.

CCS projects in Saskatchewan

- SaskPower Boundary Dam Integrated Carbon Capture and Storage Demonstration Project;
- SaskPower Carbon Capture Test Facility
- CO₂-EOR (International Energy Agency GHG Weyburn-Midale CO₂ Monitoring & Storage Project)
 - Deep Saline CO₂ Storage (Aquistore)
- Petroleum Technology Research Centre (PTRC)
 - International Performance
 Assessment Centre (IPAC)
 - International Test Centre (ITC)

Michael J. Monea, P. Eng., P. Geo. Vice President, Integrated Carbon Capture & Storage Projects, SaskPower mmonea@saskpower.com (306) 566-3132

Development/Owner's Engineer

David Cameron, P. Eng. Principal Stantec Consulting Clean Coal Centre of Excellence david.cameron@stantec.com (306) 781-6502

EPC Contractor - SO₂/CO₂ System

Guy Couturier, M.A. Sc., P. Eng. Project Manager SNC-Lavalin Inc. guy.couturier@snclavalin.com (905) 829-8808

27

Questions?

NETL CO₂ Injection & Storage Cost Model EPRI-CCS Cost Workshop, Palo Alto, CA – April 25-26, 2012

Tim Grant and Dave Morgan – National Energy Technology Laboratory Jason Valenstein, Andrea Poe and Marta Milan – Booz Allen Hamilton, Inc. Richard Lawrence – Advanced Resources International, Inc.

Introduction

2

Model Description Geologic and Cost Databases Model Runs Conclusions

Purpose of our model

- Estimate cost for a single site
 - Saline storage
 - O&G and EOR in near future
- Provide data to generate national or regional storage cost supply curves
- Provide cost analysis of various sequestration technology

Existing NETL Models

- Estimating Carbon Dioxide Transportation and Storage Costs , pre-cursor to the current CO₂ *Transportation & Storage Cost Model*
- Capture-Transport-Storage (CTS) model to model pipeline development for transportation of captured CO₂ from source to sink
- Power Supply Financial Model (PSFM) to model the cost of capture for an IGCC or Super-critical PC plant

CO₂ Injection and Storage Cost Model

Geologic Module

Activity Cost Module

Financial Module

Sequence of events for CO₂ storage operations and framework for CO₂ Transportation & Storage Cost Model

Regional evaluation for a specific site	Site selection & characterization	Permitting	Operations	Post-Injection Monitoring	Long-term Stewardship
	Negative Cash Flow		Positive Cash Flow Injection Fee	Negative Cash Flow	Trust fund covers costs
Estimate of volume of emissions to sequester and pore space needed over project life.	Assemble data; acquire new data; drill new well(s) & acquire seismic; establish data baselines; get necessary permits.	Submit all plans and financial responsibility for permit application – UIC & State	Finish construction of surface facilities and MVA grid; Tie injection wells to CO ₂ supply.	Present PISC & site closure plan to Director; apply for reduced time period	Another entity accepts long-term stewardship
Data research – geologic, geophysical, engineering, financial & social. Initial modeling of potential site.	Finish assembling acreage block.	Director approves drilling of injection wells. State (DEP) approves site permit. Approval of other permits as needed.	Inject Captured CO ₂ . Annual MIT for injection wells; workovers as needed.	Follow PISC & site closure plan, periodic testing and reporting.	Operator & other parties relieved of liability unless negligent, etc.
Regional geologic evaluation to identify several prospective areas for storage operations .	Prepare plans required for UIC Class VI and state permits. FEED for injection wells, surface facilities and MVA grid.	Drill injection wells, incorporate new well data in plans and present to Director.	Drill additional monitoring wells and remediate existing wells (corrective action) as necessary as plume expands. Well workovers & equip. maintenance as necessary.	Establish non- endangerment; closure approved; P&A all wells & restore site(s).	Other entity oversees trust fund, pays site costs, settles all claims.
Begin to assemble acreage block. Will need more acreage than actually used +30 yrs later. Hopefully first site selected will prove correct.	gin to assemble acreage block. Will need more reage than actually used 30 yrs later. Hopefully tt site selected will prove correct.		Follow all plans, AoR review every 5 yrs, annual reporting. Pay into to fund for LT Stewardship; P&A injection wells, some financial responsibility instruments released.	With closure of Class VI permit, Director releases financial responsibility instruments. State awards Certificate of Completion & assumes long-term stewardship.	
0.5 to 1 year	3 to	5 years	30 to 50 years	10 to 50+ years	Rest of Civilization

5

Some caveats and assumptions

- This is not a reservoir model, geo-engineering equations are used to estimate parameters that impact costs.
- Reservoir architecture is defined by porosity, permeability and height. Variability reflecting depositional facies is not considered.
- Injection rate of CO_2 over life of project is assumed to be constant.
- Injected CO₂ in reservoir is assumed to roughly occupy the area of a cylinder defined by the height of the reservoir and the radius of the surface area of the plume.
- Circular area of the plume defines the extent of the Area of Review (AoR).
- Growth of CO_2 plume is uniform over the operational period.
- AoR review data/seismic acquisition, interpretation, report preparation and presentation to EPA occur in same year.
- Field equipment, field pipelines, initial monitoring wells/corrective action wells and MVA grid constructed and operational/sampled in first year of operations.
- Monitoring wells are drilled and full year sampling occur in same year.
- Annual injection rate, time span of stages and costs are applied to all reservoirs comprising the cost supply curve.

Introduction Model Description

Geologic and Cost Databases Model Runs Conclusions Sources

7

Input tables allow for various Management decisions that impact project costs.

Project Management Decision	Cost Impact
Volume of CO ₂ sequestered annually	Size of the project
Duration of the Sequestration Stages (Site Characterization, Operations, etc.)	Time Value of Money
Instrument(s) of Financial Responsibility	Upfront cost of project and Time Value of Money
Technology choices and application for site characterization and/or MVA	Project costs incurred
Spacing (well density) of Monitoring Wells	Total number of Wells to drilled and operated
Frequency of various activities performed (i.e. how often seismic is run 3,5,7 years.)	Frequency and timing of material costs as they are incurred

(8)

9

Geology Module Provides Data and Parameters That Drive Storage Costs

10

Geologic Data Sources: Database, User or Geo-engineering Calculations

(11

Activity Cost Data is entered into 44 input tables that cover all costs up until Long-term Stewardship

<u> Glabel Pere</u>	meterr	Lart Undat	Sauce		K	ev to Innut Ta	hle Grouning	
Labor F	Bater	9/1/2011	EPA (via Cart Madel Version 1)		_ _`	cy to input iu	bie ereuping.	,
Activity-Sp.	ecific Parameterr I analystics for site relaction				Globa	Il parameters us	ed in all activitie	s – i.e.
Purcha	aret Acquiret Analyziz (PAA):	9/1/2011	EPA (via Cart Model Version 1)		Lahor	Rates		
Site Cha	rectorization				Labor	Rates		
			Cart Column: EPA (via Cart Model Version 1)		_	_		
Purcha	arofAcauiro & analyzo: (datafraftuaro nat acauirod)	97172011	Yolume of Hours: NETL estimates from ? (via Cast Model Version 1)	2	Stage	- Specific Para	meter(s)	
Prepar	ne:	9/1/2011	EPA (via Cart Model Version 1)		olugo	opeoine r ara		
Madeli	ina:	9/1/2011	EPA (via Cart Madel Version 1)					
Carres	ctive Action Planning	9/1/2011	EPA (via Cart Model Version 1)		_			
Frants	End Engineering & Derign	9/1/2011	EPA (via Cart Model Version 1)	2	Paran	neters used in A	ctivities across l	Viultiple
Prepar	ration of plans for Class Weermit	9/1/2011	EPA (via Cart Madol Vorsian 1)		<u></u>	<i></i>	o "	
Landle	earina:	9/1/2011	EPA (via Cart Madol Vorsian 1)		Stage	s (i.e. Permitting	a, Operations, et	C.)
Permit	ter .	9/1/2011	EPA (via Cart Model Version 1)			- (5 , - 1 ,	- /
Injectio	ian well drilling:	9/1/2011	EPA (via Cart Model Version 1)					
Subpar	art RR (Subpart UU for EOR Projectr);	9/1/2011	EPA (via Cart Model Version 1)	4	Well	Drilling Cost Par	ameters	
???								
Einansi	cial reconcribility: [9146.85]	9/1/2011	EPA (via Cart Model Version 1)					
Operatio								
Gather	rina Field Data:	9/1/2011	EPA (via Cart Model Version 1)					
Carres	ctive Action (CA);	9/1/2011	EPA (via Cart Model Version 1)					
Genera	al Storage Field Infrastructure Capital Cortr	9/1/2011	EPA (via Cart Model Version 1)					
Genera	al Storage Field Infrastructure 08M cortr	9/1/2011	EPA (via Cart Madol Vorsian 1)	\sim		This table prov	vides a quick lir	nkto I
Preduc	ced Water Treatment facilitier Capital Cartr	9/1/2011	EPA (via Cart Model Version 1)					
Parameters	ared across Multiple Stages					various cost it	eme (Innut wor	kshaat)
Foorpo	or tunne (other expenses):	9/1/2011	EPA (via Cart Madel Version 1))		cina (input woi	
Feer 0	One-Time (other expenses):	9/2/2011	EPA (via Cart Madol Vorzian 1)			Cost data cou	rea and most r	
Parind	die Bonarte:	9/1/2011	EPA (via Cart Madel Version 1)			Cosi uala sou	ice and most re	ecent up-
Fluid S	Sampler	9/1/2011	EPA (via Cart Madel Version 1)			data ara naata	d in this table	-
GarSa	ameler	9/1/2011	EPA (via Cart Madel Version 1)			date are poste	ed in this table.	
Aerialt	/Satallite Survey	9/1/2011	EPA (via Cart Madel Version 1)			•		
Genehr	virical Survey: Surface Seirmic: 3D:	11/16/2011	Personal Communication with Tim Grant, Illinoir ADM Decatur Phare III Project.					
Genehr	vizical Survey: Surface Seizmic: 2D:	11/16/2011	Personal Communication with Tim Grant. Hanner Leetaru, Illinoir State Geological Survey.					
Geneby	vrical Survey: Wellbure Seirmic:	9/1/2011	May not ure					
			May not ure - Personal Communication with Tim Grant. Xianjin Yang, Lawrence Livermore					
Geneha	vrical Survey: Electrical:	11/16/2011	National Laboratory.					
			May not we - Perronal Communication with Tim Grant. Seafloor Gravity Survey - Sleipner			44 Toble	o in ordor	
Other 0	Geneharical	9/7/2011	Fiold (Karon Kluggor project managor).			44 I abie	S III OI UEI	
			Decetur Phare III Preject		_			
Atmos	mborie	11/16/2011	All Other carts: EPA (via Cart Madel Version 1)	1. Labor	Rates	12. Subpart RR	23. Gas Samples	34. Wireline
Injectio	ins Wall Masitariaa	9/1/2011	EPA (via Cart Madel Version 1)			12 Finan Deen	24 Aprial Survey	25 Coro Doo
Well-Drilling	a Cartr	7112011		Z. PAA	9	13. Finan. Resp.	24. Aeriai Survey	35. Core Rec.
Dura	-	41412000	API - 2006 Juice Association Surgeon on Deilling Costs, April 2008 (via Cost Medal Usering 1)	3 Softwa	are	14 Gath F Data	25 Seismic 3D	36 Eluid Rec
P ermis	<u> </u>	47172000	AP1-2006 Jaire Association Screen an Defiling Casts, April 2008 (via Casts Madel Version 1)	0. 00100				
Drilling	a Carty	4/1/2008	AP1-2006 Jaint Association Survey on Drilling Carter, April 2006 (via Carter Basil Version 1)	4. Prepa	re	15. CA	26. Seismic 2D	37. Well Tests
wirein	ne l'uepenyrical i Logaina;	47172008	AP1-2006 Jaint Association Servey an Drilling Cardy, April 2008 (via Cardy Hadd Yerstan I)	E Model	ina		27 Wallborg Sais	20 Mall Salam
Care B	Secovery:	4/1/2008	AP1-2006 Jaint Appendiation Survey on Drilling Carter, April 2006 (via Carter Basil Version 1)	5. Woder	ing	10.035100	21. Weilbure Sels	so. weil seism
Fluid B	Secondery:	4/1/2008	AP1-2006 Jaint Association Survey on Drilling Carty, April 2006 (via Cart Made Version 1)	6 CA Pl	ans	17. GSFIO&M	28. Elec. Survev	39 Analysis
well to	erst:	4442008	API - 2006 Jaint Arraciation Survey on Drilling Casts April 2009 (via Cast Madel 1977) in C					10. 0
well Se	eurmic:	4/1/2008	API - 2000 Jaint Association Survey on Drining Carty, April 2000 (via Cart (1866) Version 1)	7. ⊢ront	End E&D	18. PWICC	29. Other Geo	40. Completion
Basiya	and the second sec	4/4/2008	API - 2006 Jaint Association Survey on Drilling Casts, April 2008 (via Cast Med - 10	8 Parmi	t Pron	19 Fee ner tonne	380 Atmospheric	41 M Equip
Gamele	lesien:	4/1/2008	APT - 2000 Joint Association Survey on Drilling Carty, April 2000 (via Cart Model Verrien 1)	O. Feilill	riep		50. Autospheric	-r. w. ⊑quip
manita	ar weil paunnale Lauisment;	4/1/2008	API - 2006 Joint Association Survey on Drining Care, April 2006 (via Care Mathematical Version 1)	9. Land I	Leasing	20. One time fees	31. Inj. Monitorina	42. O&M
Uperat	tione & Plaintenance:	4/1/2008	API - 2006 Joint Association Survey on Drilling Carty, April 2006 (via Cart Model Version 1)			01 Dementioner		10 MIT
Annual Di ô	il Mechanical Integrity Tert:	4/1/2008	APT - 2000 Joint Association Survey on Drilling Casts, April 2000 (via Cast Model Version 1)	10. Perm	าเธ	∠1. Reporting	32. Permits 🝊	43. MH
Plug &	(Reandan)	4/1/2008	Hr (- 2000 Joint Hasoclation Survey on Drilling Carty, Hpril 2000 (Via Cart Model Version 1)	11 Inico	tion Wall	22 Eluid Samples	33 Drilling Costs	11 D8A
Camelo Camelo Manita Occrat Annual Plua &	cu: ar Well Daunhale Equiement; time & Maintenance; 11 Mechanical Integrity Text; Alkandan;	4/1/2008 4/1/2008 4/1/2008 4/1/2008 4/1/2008 4/1/2008	API - 2006 Jaint Azraciatian Survey an Drilling Carty, April 2008 (via Cart Madel Verzian 1) API - 2006 Jaint Azraciatian Survey an Drilling Carty, April 2008 (via Cart Madel Verzian 1) API - 2006 Jaint Azraciatian Survey an Drilling Carty, April 2008 (via Cart Madel Verzian 1) API - 2006 Jaint Azraciatian Survey an Drilling Carty, April 2008 (via Cart Madel Verzian 1) API - 2006 Jaint Azraciatian Survey an Drilling Carty, April 2008 (via Cart Madel Verzian 1) API - 2006 Jaint Azraciatian Survey an Drilling Carty, April 2008 (via Cart Madel Verzian 1) API - 2006 Jaint Azraciatian Survey an Drilling Carty, April 2008 (via Cart Madel Verzian 1)	8. Permi 9. Land I 10. Perm 11. Injec	t Prep Leasing hits tion Well	 Fee per tonne One time fees Reporting Fluid Samples 	30. 31. 32. 33.	Atmospheric Inj. Monitoring Permits () Drilling Costs

(12)

Tables in the Input Sheet develop our Schedule of Activities throughout the project's stages

Activity Costs are derived from the various management decisions and inputs and are posted in the year(s) that they occur in a separate worksheet in the module.

Activ	vity Cost Schedule Compor	nents		Activity Co	st Schedule
First Set of Columns	Second Set of Columns	Third Set of Columns		Fourth Set of Columns	Fifth Set of Columns
Item Name and descriptive information	All Cost information for Item to determine its cost if the Item is selected an activity	Timing information that shows which stage/year(s) the Item is applied/ performed as an activity		The schedule of cost in real dollars of the particular item in each row shown in each year it is incurred	The schedule of cost in escalated dollars of the particular item in each row shown in each year it is incurred *These Escalated Dollars are fed into the financial module to perform our business case analysis
<u>8 – 20 Columns</u>	<u>~25 Columns</u>	<u>~10 Columns</u>	••	200 Columns	200 Columns
	Spre	eadsheet Footpri	int		N

14

Activity Cost Schedule Diagram

Activity costs are calculated and posted in their respective year(s) in this worksheet: - Escalation is calculated here if selected

Activity Cost Sched	ule Compor	nents	Activ	vity Cost Schedule					
First Set of Columns		Second Set of Columns <i>Abbreviated</i>	Third Set of Columns	hird Set of Columns Fifth is not shown here					
		All Cost information for large is selected an activity.	Image: Second secon	Image: Construction of the schedule of cost in real dollars of the particular item in each row shown in each year it is incurred. Image: Construction of the particular item in each row shown in each year it is incurred. Image: Construction of the particular item in each row shown in each year it is incurred. Image: Construction of the particular item in each row shown in each year it is incurred. Image: Construction of the particular item in each row shown in each year it is incurred. Image: Construction of the particular item in each row shown in each year it is incurred. Image: Construction of the particular item in each row shown in each year it is incurred. Image: Construction of the particular item in each row shown in each year it is incurred. Image: Construction of the particular item in each row shown in each year it is incurred. Image: Construction of the particular item in each row shown in each year it is incurred. Image: Construction of the particular item in each row shown in each year it is incurred. Image: Construction of the particular item in each row shown in each year it is incurred. Image: Construction of the particular item in each row shown in each year it is incurred. Image: Construction of the particular item in each row shown in each year it is incurred. Image: Construction of the particular item in each row shown in each year item in each year ite					
~850 Rows Deep									

The Depreciation schedule tracks total depreciated amounts affecting tax payments in any given year.

		Year	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
			2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
	2097		2097									
		years	85	84	83	82	81	80	79	78	77	76
			125,884	18,597,850	172,420	172,420	5,614,629	50,484,213	362,820	362,820	362,820	362,820
			1,481	221,403	2,077	2,103	69,316	631,053	4,593	4,652	4,712	4,774
		Check	-	-	(0)	-	(0)	-	-	-	•	-
		Total In Year D&A										
_	2012	1,481	1,481	-	-	•	•	-	-	-	-	-
_	2013	222,884	1,481	221,403	-	•	•	-	-	-	-	-
_	2014	224,961	1,481	221,403	2,077	•	•	-	-	-	-	-
	2015	227,064	1,481	221,403	2,077	2,103	-	-	-	-	-	-
_	2016	296,380	1,481	221,403	2,077	2,103	69,316	-	-	-	-	-
	2017	927,433	1,481	221,403	2,077	2,103	69,316	631,053	-	-	-	-
	2018	932,026	1,481	221,403	2,077	2,103	69,316	631,053	4,593	-	-	-
	2019	936,677	1,481	221,403	2,077	2,103	69,316	631,053	4,593	4,652	-	-
_	2020	941,389	1,481	221,403	2,077	2,103	69,316	631,053	4,593	4,652	4,712	-
	2021	946,163	1,481	221,403	2,077	2,103	69,316	631,053	4,593	4,652	4,712	4,774
_	2022	1,622,358	1,481	221,403	2,077	2,103	69,316	631,053	4,593	4,652	4,712	4,774
	2023	1,627,261	1,481	221,403	2,077	2,103	69,316	631,053	4,593	4,652	4,712	4,774
_	2024	1,632,231	1,481	221,403	2,077	2,103	69,316	631,053	4,593	4,652	4,712	4,774
	2025	1,637,270	1,481	221,403	2,077	2,103	69,316	631,053	4,593	4,652	4,712	4,774
_	2026	1,642,380	1,481	221,403	2,077	2,103	69,316	631,053	4,593	4,652	4,712	4,774
	2027	2,382,518	1,481	221,403	2,077	2,103	69,316	631,053	4,593	4,652	4,712	4,774
_	2028	2,387,776	1,481	221,403	2,077	2,103	69,316	631,053	4,593	4,652	4,712	4,774
	2029	2,393,112	1,481	221,403	2,077	2,103	69,316	631,053	4,593	4,652	4,712	4,774
_	2030	2,398,527	1,481	221,403	2,077	2,103	69,316	631,053	4,593	4,652	4,712	4,774
_	2031	2,404,024	1,481	221,403	2,077	2,103	69,316	631,053	4,593	4,652	4,712	4,774
_	2032	3,215,996	1,481	221,403	2,077	2,103	69,316	631,053	4,593	4,652	4,712	4,774
	2033	3,221,666	1,481	221,403	2,077	2,103	69,316	631,053	4,593	4,652	4,712	4,774

- Can select whether or not a particular item will be expensed or capitalized.

- Straight line depreciation.

16

- Capitalized items are summed and posted in the financial module.

Financial Module:

- The purpose of the Financial Module to apply a business scenario against the cost activities to solve for how much money it needs to charge to store a tonne of CO₂ to breakeven
- Breakeven means
 - All project expenses, including financial responsibility are paid for
 - All loans are paid off including interest
 - All taxes are paid
 - The owners receive their required return on capital

Financial statements, project DCF valuation, and a breakeven analysis posted in Financial Module.

			Finar	ncial Sta	tements							Notes
0 0												
1		Year	2012	2013	2014	2015	2016	2017	2018	2019	2020	
2	Income Statement											Income Statement
3 4	Operating Cashflows											Income Statement
5	Gross Revenue (solved)				-	-		32,215,711	33,182,182	34,177,648	35,202,977	Expenses from the
б 7	Expenses (UxiM, Permitting, Plans)			300	-		1,043	4,836,917	3,918,875	4,036,441	4,157,534	Activity Cost
8	Earnings Before Interest Taxes, D&A (EBITDA)			(955)			(1,043)	27,378,794	29,263,307	30,141,206	31,045,443	Activity Cost
20	Non-Operating											Module. Revenues
21	Interest Income Interest Expense		0	•	-	-	-	-	465,082	971,136	1,504,903	are solved for in a
23	Taxes		•	·	•	· .	·	4,124,708	4,425,654	4,424,026	4,422,377	
24 25	Depreciation and Amortization		1,481	222,884	224,961	227,064	296,380	927,433	932,026	936,677	941,389	breakeven analysis
26	Net Income		(1,481)	(223,839)	(224,961)	(227,064)	(297,424)	22,326,652	24,370,709	25,751,640	27,186,579	
10												
11		Year	2012	2013	2014	2015	2016	2017	2018	2019	2020	
28	Balance Sheet											
29	Arrest											Balance Sheet
30	Assets Cash and Cash Equivalensts including PISC Reserve					-	-	23,254,085	48,556,820	75,245,137	103,373,106	Keens track of the
32	Assessed Descively							00.400.400	01.177.010	05 000 077	00.050.000	
33 34	Property, Plant, and Equipment (PP&E)		125,884	18,722,253	18,671,789	18,619,248	24,006,812	74,194,645	73,630,032	73,060,826	72,486,969	depreciation of the
35	Deferred Tax Asset		•		•		-		•	•	-	canital expenses
37	Total Assets		125,884	18,722,253	18,671,789	18,619,248	24,006,812	130,630,912	156,364,499	183,508,940	212,119,141	
38	Liabilities											(from depreciation
40	Accounts Payable		955	-	-	1,043	4,836,917	3,918,875	4,036,441	4,157,534	4,282,260	schedule)
\$1 > \$2	Long Term Debt		69,236	10,299,933	10,599,351	10,696,078	13,786,516	32,354,242	19,147,609	5,570,858		
\$3	Total Liabilities		70,191	10,299,933	10,599,351	10,697,122	18,623,433	36,273,116	23,184,050	9,728,392	4,282,260	Informs the Tax
44 45	Eauit											consequences in the
\$6	Paid-In-Capital		(56,647.62)	(8,369,437.72)	(77,589.00)	(77,589.00)	(2,526,987.85)	(15,141,236.03)			-	
*r \$8	Total Equity		55,693	(10,523,772)	(10,824,312)	(10,924,186)	(18,920,857)	(13,946,464)	1,186,659	16,023,248	22,904,319	Income statement
19 9												
10												
11		Year	2012	2013	2014	2015	2016	2017	2018	2019	2020	
51	Statement of Cash Flows											
52 53	Operating Activities											Capital Expenses
54	Net Income			-	-		-	7,660,172	8,219,072	8,216,048	8,212,985	Taken from Activity
55 56	Cash Flow from (Used in) Operating Activities		(1,481)	(222,884)	(224,961)	(227,064)	(296,380)	6,732,739	7,287,046	7,279,371	7,271,596	
57 58												wodule; reflect when
59	Investing Activities											investments are
60 61	Cash Flow from (Used in) Investing Activities		(125,884)	(18,597,850)	(172,420)	(172,420)	(5,614,629)	(50,484,213)	(362,820)	(362,820)	(362,820)	
62												made in the Cash
63 64	Financing Activities Cash Provided by Owners		56.648	8.369.438	77.589	77.589	2.526.988	15.141.236				Flow Statement
65	Cash Provided by Debtors/Lenders		69,236	10,229,313	94,831	94,831	3,088,541	18,505,955				
66 67	Cash Flow from (Used in) Financing Activities		125,884	18,598,750	172,420	172,420	5,615,529	33,647,191		-		

18

User Inputs:

(19

- Financial Assumptions on Capitalization (and Debt)
- Whether or not to fund PISC and If so over what period

	internetiate Falaco (anagi innite abea to abtingai
2. Financial Model Inputs	
2.1 Financial Inputs	Value Definition
Capitalization	45% Percent Equity
Cost of Equity	15%
Cost of Debt	5% (interest rate)
Tax Rate	38% (matches PSFM)
	Assumed initial startup capita
Operations Start Year	7
Operations End Year	36
PISC Period Start Year	37
PISC Period End Year	61
PISC Funding Period Start Year	7
PISC Funding Period End Year	36
Annual Tonnes Injected	4,100,000
Cost per Tonne	11.55 dollars
Escalation Rate	3%
Interest on PISC reserve	3%

PISC is funded per the schedule set out by the user:

(20)

_											
Table 1	PISC Reserve Fund Schedule										
	PISC Funding Period	NA	NA	NA	NA	NA	NA	PISC Fundin	PISC Funding	PISC Fundin	PISC Fund
	PISC Drawdown Period	NA	NA	NA							
	PISC Drawdown Required (REAL)	•	-	-	-	•		-	-		•
	Total Real Value of PISC Reserve	116,102,551									
	Total Escalated Value of a fully funded PISC Reseve in any given project y	130,674,444	134,594,677	138,632,517	142,791,493	147,075,238	151,487,495	156,032,120	160,713,083	165,534,476	170,500,5
	Target Year to have PISC fully funded:	36									
	PV of Fully funded PISC Reserve From the starting year	-						156,032,120	-		-
	PV of Fully funded PISC Reserve, Step 2:	156,032,120									
	Future value of fully funded PISC reserve			-		-		-	-		-
	Future value of fully funded PISC reserve, Step 2:	367,699,911									
	Periods where PISC deposits are made	0	0	0) () (1	1	1	
	Number of Periods	30									
	Rate	3%									
	PISC Deposit a level payment that hits the funding target	-	-	-		-	· ·	5,201,071	5,357,103	5,517,816	5,683,35
	Beginning Balance	-	-	-	-	-	-		5,201,071	10,714,206	16,553,44
	Simple Interest	-	-	-	-	-	-	-	156,032	321,426	496,60
	Deposit	-	-	-	-	-	-	5,201,071	5,357,103	5,517,816	5,683,35
irav dovn											
	PISC Drawdown	-	-		-		-				
	End Balance	-	-		-	-	-	5,201,071	10,714,206	16,553,448	22,733,4
o included in	(Astual PISC Deposits made							5 201 071	5 257 102	E E17 010	5 000 05
e noracea m	Actual PISC Funds applied to Project	-						5,201,071		0,017,010	0,003,30
	Instant loo I and applied to I follow										
0 dd baok te	PISC Besiduals										

Financial Responsibility:

There are 2 types of instruments. The ones we fund and the ones we don't. The latter is cheaper.

Lowest Cost options:

- **Self Insure** "we're good for it" Equity makes the payment when due. We do not include unplanned bills in the model.
- **Insure** We pay someone else a fee to pay for our unplanned expenses if we incur them on top of having Equity pay all of their bills when due.
- Letter of credit We pay a bank something like .15% per year to have access to all the money we'd need to cover something unplanned. If we needed to take money from the bank this would get very expensive because we'd owe them interest on our principal. Equity pays the planned bills when due.

In between:

21

Surety Bond – either we fund it, or we have a guarantor that basically "Self Insures" it.

Highest cost options:

- **Trust Fund** and **Escrow Accounts** are tied. They both require paying money in upfront. The drivers of how expensive they will be depend on how early the money goes in and how much must go in.
 - The most expensive scenario is to fund 100% of Financial Responsibility in the first year of the project.
 - A lower cost option would be to fund it over the operating period so project revenues could be used rather than equity and debt.

The Model Solves for a Breakeven Price

22

	intermediate value	es (Grayrwhite used to distinguish rows	, columns, or sections j	
2. Financial Model Inputs				
2.1 Financial Inputs	Value	Definition	Output	
Capitalization	45%	Percent Equity		
Cost of Equity	15%		NPV	0
Cost of Debt	5%	(interest rate)	IBB	NA
Tax Rate	38%	(matches PSFM)		
	• • • • • • • • • • • • • • • • • • •	Assumed initial startup capital		
	• • • • • • • • • • • • • • • • • • •			
Operations Start Year	7			
Operations End Year	36		Defer	1
PISC Period Start Year	37			
PISC Period End Year	61			
PISC Funding Period Start Year	7		Fund PISC Reserve	e? 1
PISC Funding Period End Year	36		lf Yes, Type 1	
			If No, Type 0	
Annual Tonnes Injected	4,100,000			
Cost per Tonne	11.55	dollars	Solve for F	irst Year
Escalation Rate	3%		Storage Price	perTonne
Interest on PISC reserve	3%			

Breakeven Discussion

The breakeven analysis is a goal seek function that solves for the first year price of CO2 storage with NPV at 0 for a given cost of owners' equity

Introduction Model Description **Geologic and Cost Databases** Model Runs Conclusions Sources

(23)

Cost database resides in the Activity Cost module

- Current cost values are those used by EPA in their economic analysis
- Well costs based on API-JAS 2006 study
- Working on updating cost database
- Model user can enter their own cost data

25

Types of wells and well technology for sequestration operations

rining costs										
									"999" is used to turi	n off water costs
			£	F		Monitoring			Wa	ater
	Enter zero to use default values. For a One-Time cost set the	Strat Test	Injection	In Reservoir	Above Seal	Dual E	Groundwater	Vadose Zone	Production	Disposal
	Begin Year - user input year	0	1 6	6 0 eq	0	0 4	0	0	999 <u>-</u>	999
	End Year - user input year	0	<u> </u>	0	0	0	0	5 0	999 5	999
	Begin Year - year that will be used	2	<u>+</u> 6	<u>+ 7</u> ž	<u> </u>	<u> </u>	7	<u>× 7</u>	<u>× 999</u> ×	999
	End Year - year that will be used	4	S 6	36 1	36 #	36 #	36	± 36	<u> 999</u> 변	999
	Periodic	2	5 <u>1</u>	5 5	<u>5</u>	5	5	5	999	999
		\$/well	\$/well	\$/well ⊂	\$/well •	\$/well 🗅	\$/well	• \$/well •	⊃ \$/well ○	\$/well
	Well (Drilling) permit	100		100	100	100	100	100	100	10
4.1 Permits	Water Discharge									
	Air Emissions									
Drilling Costs are Calculated by	state. These cells reference the sheet "Drilling Costs."	\$/well	\$/well	\$/well	\$/well	\$/well	\$/well	\$/well	\$/well	\$/well
	Cost to drill and complete	963960 7466	x 846058 3647	x 828155.9829 x	773492.2217 x	828155.9829 x	136659.4031 >	x 10932.75225	< 846058.3647 x	846058.36
	cost to drift and complete	00000.7400								
4.2 Drilling Costs	Cost to drill (completion cost items checked below)	865566.7466				0				
4.2 Drilling Costs	Cost to drill (completion cost items checked below) Well site preparation (pad, pits, etc.)	865500.7400				0				
4.2 Drilling Costs	Cost to drill (completion cost items checked below) Well site preparation (pad, pits, etc.)	\$/#/wall	C/fr/well	¢/fr/well	¢/tt/wall	0 0	C/ft/well	S/ft/well	C/ft/well	C/ft/well
4.2 Drilling Costs	Cost to drill (completion cost items checked below) Well site preparation (pad, pits, etc.) Resistivity* (Electrical)	\$/ft/well	\$/ft/well	\$/ft/well	\$/ft/well	0 0 \$/ft/well	\$/ft/well	\$/ft/well	\$/ft/well	\$/ft/well
4.2 Drilling Costs	Cost to drill complete model of the schedule o	S/ft/well 0.75	\$/ft/well 0.75	\$/ft/well 0.75	\$/ft/well 0.75	0 0 \$/ft/well 0.75	\$/ft/well 0.75)	\$/ft/well x 0.75	\$/ft/well 0.75	\$/ft/well
4.2 Drilling Costs	Cost to drill complete Cost to drill (completion cost items checked below) Well site preparation (pad, pits, etc.) Resistivity* (Electrical) Density*	S/ft/well 0.75 0.75	\$/ft/well 0.75 0.75	\$/ft/well 0.75 0.75	\$/ft/well 0.75 0.75 0.75	0 0 \$/ft/well 0.75 0.75 0.75	\$/ft/well 0.75 0.75 0.75	S/ft/well x 0.75 0.75 0.75	\$/ft/well 0.75 0.75 0.75	\$/ft/well 0. 0.
4.2 Drilling Costs	Cost to drill complete Cost to drill (completion cost items checked below) Well site preparation (pad, pits, etc.) Resistivity* (Electrical) Density* Neutron* Gamma Rav*	S/ft/well 0.75 0.75	\$/ft/well 0.75 0.75 0.75	S/ft/well 0.75 0.75 0.75	\$/ft/well 0.75 0.75 0.75	0 0 \$/ft/well 0.75 0.75 0.75	\$/ft/well 0.75 0.75 0.75	S/ft/well x 0.75 0.75 0.75	\$/ft/well 0.75 0.75 0.75	\$/ft/well 0. 0.
4.2 Drilling Costs	Cost to drill (complete Cost to drill (completion cost items checked below) Well site preparation (pad, pits, etc.) Resistivity* (Electrical) Density* Neutron* Gamma Ray* Spontaneous Potential*	S/ft/well 0.75 0.75	S/ft/well 0.75 0.75 0.75	S/ft/well 0.75 0.75 0.75	\$/ft/well 0.75 0.75 0.75	0 0 \$/ft/well 0.75 0.75 0.75	S/ft/well 0.75 0.75 0.75	S/ft/well × 0.75 0.75 0.75	S/ft/well 0.75 0.75 0.75	\$/ft/well 0. 0.
4.2 Drilling Costs	Cost to drill complete Cost to drill (completion cost items checked below) Well site preparation (pad, pits, etc.) Resistivity* (Electrical) Density* Neutron* Gamma Ray* Spontaneous Potential* Caliaer*	S/ft/well 0.75 0.75 0.75	\$/ft/well 0.75 0.75 0.75	S/ft/well 0.75 0.75 0.75	\$/ft/well 0.75 0.75 0.75	0 0 \$/ft/well 0.75 0.75 0.75	\$/ft/well 0.75 0.75 0.75	S/ft/well x 0.75 0.75 0.75	\$/ft/well 0.75 0.75 0.75	\$/ft/well 0. 0.
4.2 Drilling Costs	Cost to drill complete Cost to drill (completion cost items checked below) Well site preparation (pad, pits, etc.) Resistivity* (Electrical) Density* Neutron* Gamma Ray* Spontaneous Potential* Caliper*	5/ft/well 0.75 0.75	\$/ft/well 0.75 0.75 0.75	S/ft/well 0.75 0.75 0.75	\$/ft/well 0.75 0.75 0.75	0 0 \$/ft/well 0.75 0.75 0.75	\$/ft/well 0.75 0.75 0.75	\$/ft/well x 0.75 0.75 0.75	\$/tt/well 0.75 0.75 0.75	\$/ft/well 0. 0.
4.2 Drilling Costs	Cost to drill (complete concost items checked below) Well site preparation (pad, pits, etc.) Resistivity* (Electrical) Density* Neutron* Gamma Ray* Spontaneous Potential* Caliper* Temperature* Sonic*	S/ft/well 0.75 0.75 0.75	\$/ft/well 0.75 0.75 0.75	S/ft/well 0.75 0.75 0.75 0.75 0.75 0.75	\$/ft/well 0.75 0.75 0.75	0 0 5/ft/well 0.75 0.75 0.75	\$/ft/well 0.75 0.75 0.75	S/ft/well x 0.75 0.75 0.75	S/ft/well 0.75 0.75 0.75	\$/ft/well 0. 0.
4.2 Drilling Costs 4.3 Wireline (Geophysical)	Cost to drill complete Cost to drill (completion cost items checked below) Well site preparation (pad, pits, etc.) Density* Neutron* Gamma Ray* Spontaneous Potential* Caliper* Temperature* Sonic* Duad-Combo (includes *)	\$/ft/well 0.75 0.75 0.75	\$/ft/well 0.75 0.75 0.75 0.75	S/ft/well 0.75 0.75 0.75 0.75	S/ft/well 0.75 0.75 0.75 0.75	0 0 5/ft/well 0.75 0.75 0.75 0.75	S/ft/well 0.75 0.75 0.75 0.75	\$/ft/well x 0.75 0.75 0.75 0.75 0.75 0.75 1.25	S/ft/well 0.75 0.75 0.75 0.75	S/ft/well 0. 0.
4.2 Drilling Costs 4.3 Wireline (Geophysical) Logging:	Cost to drill complete Cost to drill (completion cost items checked below) Well site preparation (pad, pits, etc.) Resistivity* (Electrical) Density* Neutron* Gamma Ray* Spontaneous Potential* Caliper* Temperature* Sonic* Quad-Combo (includes *) Triple-Combo (less Sonic)	S/ft/well 0.75 0.75 0.75 0.75 1.25 0.9	S/ft/well 0.75 0.75 0.75 0.75 0.75 0.75 0.75 x 0.75 x 0.75 0.9	S/ft/well 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	\$/ft/well 0.75 0.75 0.75 0.75 0.75 0.75 1.25 2.0.9	0 0 0 5/ft/well 0.75 0.75 0.75 0.75 0.75 0.75 0.75	\$/ft/well 0.75 0.75 0.75 0.75 0.75 0.75 1.25 0.9	S/ft/well x 0.75 0.75 0.75 0.75 0.75 0.75 1.25 0.9	5/ft/well 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	S/ft/well 0. 0. 0. 0.
4.2 Drilling Costs 4.3 Wireline (Geophysical) Logging:	Cost to drill complete Cost to drill (completion cost items checked below) Well site preparation (pad, pits, etc.) Pensity* Density* Neutron* Gamma Ray* Spontaneous Potential* Caliper* Temperature* Sonic* Quad-Combo (includes *) Triple-Combo (less Sonic) Nuclear Magmetic Resonance (NMR)	5/ft/well 0.75 0.75 0.75 0.75 0.75 0.75	\$/ft/well 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 × 0.75 × 0.75	S/ft/well 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	S/ft/well 0.75 0.75 0.75 0.75 0.75 0.75 1.25 0.9 0.75	0 0 0 5/ft/well 0.75 0.75 0.75 0.75 0.75 0.75 1.25 0.9 0.75	S/ft/well 0.75 0.75 0.75 0.75 0.75 0.75 1.25 0.9 0.75	S/ft/well x 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	5/ft/well 0.75 0.75 0.75 0.75 0.75 1.25 0.9 0.75	\$/ft/well 0.1 0.1 0.1 0.1 1.1 0 0 0.1
4.2 Drilling Costs 4.3 Wireline (Geophysical) Logging:	Cost to drill (complete constitems checked below) Well site preparation (pad, pits, etc.) Well site preparation (pad, pits, etc.) Density* Density* Samma Ray* Spontaneous Potential* Caliper* Temperature* Sonic* Quad-Combo (includes *) Triple-Combo (ices Sonic) Nuclear Magmetic Resonance (NMR) Borehole Imaging	5/ft/well 0.75 0.75 0.75 0.75 1.25 0.9 0.75	S/ft/well 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	S/ft/well 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	S/ft/well 0.75 0.75 0.75 0.75 0.75 1.25 × 0.9 0.75 0.75 0.75	0 0 0 0,75 0,75 0,75 0,75 0,75 0,75 0,75	\$/ft/well 0.75 0.75 0.75 0.75 0.75 1.25 0.9 0.75 0.75	S/tt/well x 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	S/ft/well 0.75 0.75 0.75 0.75 0.75 0.75 1.25 0.9 0.75 0.75	\$/ft/well 0.: 0.: 0.: 0.: 1.: 0.: 0.: 0.: 0.:
4.2 Drilling Costs 4.3 Wireline (Geophysical) Logging:	Cost to drill complete Cost to drill (completion cost items checked below) Well site preparation (pad, pits, etc.) Density* Neutron* Gamma Ray* Spontaneous Potential* Caliper* Temperature* Sonic* Quad-Combo (includes *) Triple-Combo (less Sonic) Nuclear Magmetic Resonance (NMR) Borehole Imaging Casing Inspection Log	S/ft/well 0.75 0.75 0.75 1.25 0.9 0.75 0.75 0.75	\$/ft/well 0.75 0.75 0.75 0.75 0.75 x 0.75 0.75 0.75 0.75 0.75 0.75 x 0.75 x 0.75 x 0.75 x 0.75 x 0.75 x 0.75 4.15	S/ft/well 0.75 0	S/ft/well 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 1.25 × 0.9 0.75 0.75	0 0 0 0,75 0,75 0,75 0,75 0,75 1,25 × 0,75 0,75 1,25 × 0,9 0,75 × 0,75 × 0,75	S/ft/well 0.75 0.75 0.75 0.75 1.25 0.9 0.75 0.75 0.75 0.75	\$/ft/well x 0.75 0.75 0.75 0.75 0.75 1.25 0.9 0.75 0.75 1.25 0.9 0.75 1.25 0.9 0.75 0.75 0.75	5/ft/well 0.75 0.75 0.75 0.75 1.25 0.9 0.75 0.75 0.75 4.15	S/ft/well 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
4.2 Drilling Costs 4.3 Wireline (Geophysical) Logging:	Cost to drill complete Cost to drill (completion cost items checked below) Well site preparation (pad, pits, etc.) Resistivity* (Electrical) Density* Neutron* Gamma Ray* Spontaneous Potential* Caliper* Temperature* Sonic* Quad-Combo (includes *) Triple-Combo (less Sonic) Nuclear Magmetic Resonance (NMR) Borehole Imaging Casing Inspection Log Cement Bond Log	5/ft/well 0.75 0.75 0.75 0.75 1.25 0.9 0.75 0.75 0.75 0.75 0.75 0.75	\$/ft/well 0.75	S/ft/well 0.75	\$/ft/well 0.75 0.75 0.75 0.75 0.75 1.25 0.9 0.75 0.75 0.75 1.25 0.9 0.75 0.25 0.2	0 0 0 5/ft/well 0.75 0.75 0.75 0.75 1.25 0.75 0.75 0.75 0.75 0.75 x 0.75 x 0.75 x 0.75 0.75	\$/ft/well 0.75 0.75 0.75 0.75 0.75 1.25 0.9 0.75 0.75 0.75 4.15 0.25	S/ft/well x 0.75 0.75 0.75 0.75 0.75 1.25 0.9 0.75 0.75 4.15 0.25	5/ft/well 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.9 0.75 0.75 0.75 0.75 0.75 0.75	\$/ft/well 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
4.2 Drilling Costs 4.3 Wireline (Geophysical) Logging:	Cost to drift (completion cost items checked below) Well site preparation (pad, pits, etc.) Well site preparation (pad, pits, etc.) Density* Resistivity*(Electrical) Density* Resistivity*(Electrical) Density* Spontaneous Potential* Caliper* Temperature* Sonic* Quad-Combo (includes *) Triple-Combo (less Sonic) Nuclear Magmetic Resonance (NMR) Borehole Imaging Casing Inspection Log Cement Bond Log	5/ft/well 0.75 0.75 0.75 0.75 1.25 0.9 0.75 0.75 0.75 4.15 0.25 \$/well	S/ft/well 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 × 0.75 × 0.75 × 0.75 4.15 0.255 \$/well	\$/ft/well 0.75	\$/ft/well 0.75 0.75 0.75 0.75 0.75 1.25 × 0.9 0.75 0.75 × 0.75 0.75 × 0.	0 0 0,75 0,75 0,75 0,75 0,75 1,25 x 0,75 1,25 x 0,75 0,75 x 0 x 0,75 x 0 x 0,75 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x	\$/ft/well 0.75 0.75 0.75 0.75 0.75 1.25 0.9 0.75 1.25 0.75 4.15 0.75 \$/well	S/ft/well × 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	S/ft/well 0.75 0.75 0.75 0.75 1.25 0.9 0.75 1.25 0.75 1.25 0.75 0.75 0.75 0.75 0.75 0.25 5/well	\$/ft/well 0.7 0.7 0.7 0.7 1.2 0. 0.7 0.7 0.7 4.1 0.7 0.7 5/well

26

Geology Database

1.2	A	B	C	D	E	F	G	н	1	1	K	L	M	N	0	р	Q	R	S	т
										Depositional		Area	Depth - top	Thickness	Res. Pressure	Res. Temp	Porosity	Permeability	Salinity	Main Source
1	UID	Formation Identifier	Formation Name	State	Region	Basin	RCSP	Reservoir Type	Lithology	Environment	Geologic Age	(sq miles)	(ft)	(ft)	(psi)	(°F)	(%)	(mD)	(mg/L)	Reference
2	1	Arbuckle1	Arbuckle	OK	OK - N	Northern Shelf Area	SWP	Saline	Dolomite	Peritidal	Ordovician	10,620	6,562	572	2,640	139	10.0	50.0	150,000	42
3	2	Cedar Keys-Lawson1	Cedar Keys-Lawson	FL	NE-Thin-Shallow	South Florida	SECARB	Saline	Carbonate	Reef	Cretaceous	8,500	3,550	300	NA	101	25.0	25.0	NA	a,14,45
4	3	Cedar Keys-Lawson2	Cedar Keys-Lawson	FL	Central+NW-Thick	South Florida	SECARB	Saline	Carbonate	Reef	Cretaceous	13,500	4,800	500	NA	113	22.0	25.0	NA	a,14,45
5	4	Cedar Keys-Lawson3	Cedar Keys-Lawson	FL	S-Thin-Deep	South Florida	SECARB	Saline	Carbonate	Reef	Cretaceous	6,400	4,600	300	NA	111	23.0	25.0	NA	a,14,45
6	5	Conasauga1	Conasauga	OH	OH - E	Appalachian	MRCSP	Saline	Clastic	Peritidal	Cambrian	21,200	8,000	150	NA	NA	8.0	6.0	NA	21,40,44
7	6	Copper Ridge1	Copper Ridge	OH	OH - SE	Appalachian	MRCSP	Saline	Dolomite	Peritidal	Cambrian	6,000	7,000	75	NA	NA	5.0	5.0	NA	21
8	7	Copper Ridge2	Copper Ridge	PA	PA-SW	Appalachian	MRCSP	Saline	Dolomite	Peritidal	Cambrian	5,500	9,000	75	NA	NA	5.0	5.0	NA	21,41
9	8	Copper Ridge3	Copper Ridge	WV	WV-W	Appalachian	MRCSP	Saline	Dolomite	Peritidal	Cambrian	7,000	8,250	65	NA	NA	10.0	100.0	NA	21
10	9	Dakota1	Dakota	CO	Piceance - S	Piceance	SWP	Saline	Clastic	Strandplain	Cretaceous	2,900	4,715	130	2,216	158	14.0	750.0	35,000	42
11	10	Dakota2	Dakota	CO	Piceance - N	Piceance	SWP	Saline	Clastic	Strandplain	Cretaceous	2,600	4,230	130	1,987	158	14.0	750.0	35,000	42
12	11	Dakota3	Dakota	co	San Juan - N	San Juan	SWP	Saline	Clastic	Strandplain	Cretaceous	1,300	5,935	190	2,789	203	7.5	0.4	13,500	42
13	12	Dakota4	Dakota	NM	San Juan - S	San Juan	SWP	Saline	Clastic	Strandplain	Cretaceous	10,780	3,000	82	1,410	114	17.0	1.0	10,000	42
14	13	Dakota5	Dakota	UT	Uinta	Uinta	SWP	Saline	Clastic	Strandplain	Cretaceous	5,800	11,500	40	5,365	123	12.0	20.0	23,000	42,52
15	14	Devonian1	Devonian	NM	Permian - NW	Permian	SWP	Saline	Carbonate	Shallow Shelf	Permian	4,960	10,000	100	4,665	160	6.0	10.0	100,000	42
16	15	Domengine	Domengine	CA	Sacremento - S	Sacremento	WESTCARB	Saline	Clastic	Shallow Shelf	Tertiary	2,300	4,200	375	NA	NA	28.0	100.0	NA	3,14,16
17	16	Duperow-Lower1	Duperow - Lower	MT	MT-CENT	Kevin Dome	BSCP	Saline	Carbonate	Peritidal	Devonian	4,850	3,800	300	NA	NA	15.0	20.0	>10,000	5,47
18	17	Duperow-Upper1	Duperow - Upper	MT	MT-CENT	Kevin Dome	BSCP	Saline	Carbonate	Peritidal	Devonian	4,850	3,400	400	NA	NA	7.0	10.0	>10,000	5,47
19	18	Entrada1	Entrada	CO	San Juan - N	San Juan	SWP	Saline	Clastic	Eolian	Jurassic	1,500	5,155	150	2,423	186	24.0	300.0	11,000	42
20	19	Entrade2	Entrada	NM	San Juan - S	San Juan	SWP	Saline	Clastic	Eolian	Jurassic	7,420	3,000	131	1,410	114	24.0	200.0	10,000	42
21	20	Entrada3	Entrada	co	Sand Wash - S	Sand Wash	SWP	Saline	Clastic	Eolian	Jurassic	2,900	5,025	170	2,362	133	20.0	400.0	8,500	42

Formation information: State, Region, Basin, RCSP, Lithology, Depositional Environment, Geologic Age, Area, Depth, Thickness, Res. Pressure, Res. Temp, Porosity, Permeability, Salinity

Saline database based on the NATCARB database with formation data provided by numerous sources. Majority of the data is gleaned from publicly available publications and studies by NATCARB Regional Carbon Sequestration Partnerships (RCSPs).

Other sources include the USGS, the Gulf Coast Carbon Center of the Bureau of Economic Geology at the University of Texas, State Geologic Surveys, National Laboratories and Universities. Some reservoir data for deep saline horizons was inferred from wells drilled into the same horizon at shallower depths.

Saline database: 48 Formations in 25 Basins across 23 States = 151 reservoirs

27

SECARB Delineation of Studied Areas

Areal Extent of Saline Reservoir

- In the model's geologic database, the saline formations were split spatially mainly by state and basin.
- If sufficient geologic study was available to provide a range of reservoir parameters by area, some formations could be further delineated based on those parameters.
- For instance, contoured porosity data of the Mount Simon formation in Michigan was available and allowed division of the state by regions based on areas of high, medium and low porosity. The Midwest Regional Carbon Sequestration Program (MRCSP) extensively contoured formation structure and thickness and made these maps available on their web site.
- The Gulf Coast Carbon Center has similar maps of twenty-one potential storage horizons from all regions of the U.S.

28

• From these various sources, the potential storage capacity for formations listed in the geologic database could be defined based on to the gross height of the formation with its area in square miles calculated in ArcGIS.

Example of MRCSP Contour Map -Oriskany Sst Structure

Example of GCCC Contour Map – Madison Group Structure, Williston Basin

Change in Plume Area with Change in Regional Structure

Base on Storage Coefficients derived from Reservoir Modeling (Gorecki et al)

10 %

Dolomite

Peritidal

NATIONAL ENERGY TECHNOLOGY LABORATORY

Arbuckle

29

572 ft
Introduction Model Description Geologic and Cost Databases **Model Runs**

Conclusions

(30)

Modeler Inputs

- Select annual of CO₂ to be sequestered.
- Select a geologic horizon listed in the geologic database for cost analysis or enter own proprietary reservoir data
- Select technologies as well as for other operational and labor *costs and their respective costs*.
- If preferred, enter own cost data.

31

• Select begin year and time duration for each of the stages.

Model Outputs

- Model can be run to provide cost analysis of a single site or to generate data to create a cost supply curve of multiple potential sites
- The cost for each stage, injection rate, reservoir and financial parameters for each reservoir formation in the database is posted.
- Stage costs posted are escalated cost per escalation rate selected.
- Data related to the cost supply curve is posted in a new worksheet created when the model's macro is run.
- Output data can be sorted per modeler's discretion for analysis.

· Impact on cost due to selection of Financial Responsibility instrument

32

- All cost based on sequestering 123 million tonnes over 30 years; Flat Structure
- The storage cost supply curve has a cumulative storage potential of 2,471,161 million tonnes
 - Atlas 3rd: 1,123,430 to 13,406,090 million tonnes Saline storage potential for L48
- Financial Parameters: Equity = 45%, Cost of Equity = 20%, Escalation = 3%

Self-Ins P-50 Flat	P-10	P-50	P-90
Cost / tonne - \$	2.64	4.64	14.61
Formation Height - ft	857	715	520
Porosity - %	0.28	0.21	0.17
Permeability - md	391	240	167
Plume Area – mi ²	24.4	44.2	147.2
Injection Wells	2.27	4.78	33.24
Monitoring Wells	20.4	36.3	118.72
Count	15	72	128
States	5	17	22
Formations	4	21	40
Potential Storage - Mt	741,226	1,139,878	1,596,871
Cum Elec + Ind Emissions to 2114 - Mt	451,247		

Self-Insurance P-50 Flat

	P-10	P-50	P-90
States	California, Texas, Illinois, Indiana, Alabama	Colorado, Florida, Georgia, Kentucky, Maryland, Michigan, Mississippi, Montana, North Dakota, New Mexico, Ohio, Oklahoma,	Louisiana, Pennsylvania, South Dakota, West Virginia, Wyoming.
Formations	Repetto Ss, Frio, Mt. Simon, L. Tuscaloosa	Arbuckle, Cedar Keys-Lawson, Conasauga, Domengine, Entrada, Hermosa, Madison, Minnelusa, Mokelumne River, Morrison, Paluxy, Red River, Starkey, Waste Gate, Weber, Winters, Woodbine.	Copper Ridge, Dakota, Devonian, Duperow, Fountain, Glorietta, Leadville, Lyons, Mesaverde, Muddy, Nugget, Rose Run, San Andres, St. Peter, Stevens, Sunniland, Sylvania, Tensleep,
Basins	Los Angeles, Gulf Coast, Illinois, Kankakee Arch	Appalachian, Cincinnati Arch, Coastal Plain, East Texas, Michigan, N. Shelf Area, Paradox, Piceance, Powder River, Sacremento, San Juan, South Florida, Williston.	Big Horn, Canon City, Denver, Findlay Arch, Green River, Kevin Dome, La Barge Platform, Permian, San Joaquin, Sand Wash, Wind River.

34

PISC-TF P-50 Flat	P-10	P-50	P-90
Cost / tonne - \$	4.80	9.89	34.30
Formation Height - ft	980	742	525
Porosity - %	0.30	0.20	0.17
Permeability - md	403	232	167
Plume Area – mi ²	13.44	36.87	136.90
Injection Wells	2.4	4.25	40.06
Monitoring Wells	11.53	30.47	110.51
Count	15	72	128
States	2	16	22
Formations	4	20	39

35

PISC-TF P-50 Flat

	P-10	P-50	P-90
States	California, Texas	Alabama, Colorado, Florida, Georgia, Illinois, Indiana, Kentucky, Maryland, Michigan, Mississippi, Montana, North Dakota, Oklahoma, Wyoming.	Louisiana, New Mexico, Ohio, Pennsylvania, South Dakota, West Virginia.
Formations	Repetto Ss, Mokelumne River, Starkey, Frio.	Arbuckle, Cedar Keys-Lawson, Domengine, Hermosa, L. Tuscaloosa, Madison, Minnelusa, Morrison, Mt. Simon, Nugget, Paluxy, Red River, Waste Gate, Weber, Winters, Woodbine.	Conasauga,Copper Ridge, Dakota, Devonian, Duperow, Entrada, Fountain, Glorietta, Leadville, Lyons, Mesaverde, Muddy, Rose Run, San Andres, St. Peter, Stevens, Sunniland, Sylvania, Tensleep,
Basins	Los Angeles, Sacremento, Gulf Coast,	Cincinnati Arch, Coastal Plain, East Texas, Illinois, Kankakee Arch, La Barge Platform, Michigan, N. Shelf Area, Paradox, Piceance, Powder River, San Juan, South Florida, Williston.	Appalachian, Big Horn, Canon City, Denver, Findlay Arch, Green River, Kevin Dome, Permian, San Joaquin, Sand Wash, Wind River.

(36)

Disaggregation of the earlier Cost Supply Curve illustrate individual basin potential cost characteristics

37

Introduction Model Description Geologic and Cost Databases Model Runs **Conclusions**

(38)

Concluding comments:

- This is not a reservoir model, geo-engineering equations are used to estimate parameters that impact costs.
- Purpose of model is to understand the composition of costs that impact CO₂ sequestration operations.
- Model is undergoing revisions to improve model transparency and ability to audit the costing process.
- Risk needs to be incorporated in model at many levels:
 - Present testing scenario enjoys complete success.
- A test matrix has been developed to provide a range of sequestration scenarios against which to test NETL's CO₂ Injection and Storage cost model in conjunction with NETL's other CCS models.
- What is the cost of storage? It depends on...

Acknowledgements

NETL Strategic Center for Coal:

Sean Plasynski – Director Office of Coal & Power R&D John Litynski – Technology Manager – Sequestration John Wimer – Director Office of Program Planning & Analysis (OPPA) Chuck Zelek – Director Benefits Division OPPA

Contractors (ESPA):

Booz Allen Hamilton Advanced Resources International

40

Using the Economic Value of CO₂-EOR to Accelerate the **Deployment of CO₂ Capture**, Utilization and Storage (CCUS)

Prepared For: EPRI CCS Cost Workshop

Prepared By: Vello A. Kuuskraa, President ADVANCED RESOURCES INTERNATIONAL, INC. Arlington, VA

> April 25-26 2012 Palo Alto, CA

Unconventional Resources • Enhanced Recovery • Carbon Sequestration

JAF2012_039.PPT

April 23, 2012

Outline for Presentation

- 1. Status of CO₂ Enhanced Oil Recovery
- 2. Demand for CO_2 by the EOR Industry
- 3. Economic Value of CO₂-EOR
- 4. Concluding Thoughts and Observations

1. Status of CO₂ Enhanced Oil Recovery

3 JAF2012_039.PPT April 23, 2012

Introduction to CO₂-EOR Technology

CO₂-EOR is used to improve oil recovery from deep, light oil fields.

CO₂ is injected at high pressure often with alternating injections of water.

The CO_2 that is produced jointly with the oil is recycled (injected back into the oil reservoir).

At the end of the CO_2 -EOR project, ~100% of the purchased CO_2 is stored in the oil field, if the operator closes the oil field at pressure.

U.S. CO₂-EOR Activity

Source: Advanced Resources International, Inc., based on Oil and Gas Journal, 2012 and other sources.

Crude Oil Production from CO₂-EOR

Oil production from CO_2 -EOR has nearly doubled during the past 5 years. In 2012, it represents 6% of total U.S. crude oil production.

*Data is for EOR production rate at end of prior year; U.S. crude oil production of 6.02 MMB/D in 2012. Source: Advanced Resources Int'l. and the Oil and Gas Journal, 2012.

2. Demand for CO₂ by the EOR Industry

7 JAF2012_039.PPT April 23, 2012

Oil Recovery and CO₂ Demand/Storage: "Next Generation" CO₂-EOR Technology

Two publically available reports, prepared by Advanced Resources Int'l for U.S. DOE/NETL, provide the analytical foundation for the estimates of CO_2 demand by the EOR industry.

Demand for CO₂ by the EOR Industry

The economic demand from CO_2 -EOR is for 25 billion metric tons of CO_2 ; remaining natural and gas processing sourced CO_2 supplies can only provide about 3 billion metric tons.* Development of ROZ "fairways" would add 8 billion metric tons of economic CO_2 demand.

 CO_2 -EOR can help accelerate the capture and storage of anthropogenic CO_2 from coal- and gas-fired power plants:

- The Weyburn integrated CO₂-EOR and CO₂ storage project is the existing "poster child".
- Summit's Texas Clean Energy IPCC Project, with 2.5 million metric tons per year of captured CO₂ serves as the new "model" for CCUS.

A large-scale national pipeline network is needed for linking the Ohio Valley and Southeast U.S. captured CO_2 emissions with Mid-Continent, Rockies and West Texas oil fields and ROZ "fairways".

 $^{*}CO_{2}$ from natural sources currently provides 55 MMmt per year; CO_{2} from natural gas processing plants currently provide 13 MMmt per year of CO_{2} to the EOR industry, an additional 1 MMmt per year is from other industrial plants. The CO_{2} captured from North Dakota gasification (3 MMmt/year) is transported to Canada.

Oil Recovery and CO₂ Demand/Storage: "Next Generation" CO₂-EOR Technology*

Reservoir Setting	Oil Recovery*** (Billion Barrels)		CO ₂ Demand/Storage*** (Billion Metric Tons)	
	Technical Economic**		Technical	Economic**
L-48 Onshore	104	60	32	17
L-48 Offshore/Alaska	15	7	6	3
Near-Miscible CO ₂ -EOR	1	*	1	*
ROZ (below fields)****	16	13	7	5
Sub-Total	136	80	46	25
Additional From ROZ "Fairways"	40			8

*The values for economically recoverable oil and economic CO_2 demand (storage) represent an update to the numbers in the NETL/ARI report "Improving Domestic Energy Security and Lowering CO_2 Emissions with "Next Generation" CO_2 -Enhanced Oil Recovery (CO_2 -EOR) (June 1, 2011).

**At \$85 per barrel oil price and \$40 per metric ton CO₂ market price with ROR of 20% (before tax).

***Includes 2.6 billion barrels already being produced or being developed with miscible CO₂-EOR and 2,300 million metric tons of CO₂ use from natural sources and gas processing plants.

**** ROZ resources below existing oilfields in three basins; economics of ROZ resources are preliminary.

International, Inc.

Using the Economic Value of CO2-EOR to Accelerate the Deployment of CO2 Capture, Utilization and Storage (CCUS) Application of CO2_EOR to the **Residual Oil Zone (ROZ) Resource**

11 JAF2012_039.PPT April 23, 2012

Demand for CO₂: Number of 1 GW Size Coal-Fired Power Plants

*Assuming 7 MMmt/yr of CO₂ emissions, 90% capture and 30 years of operations per 1 GW of generating capacity. **At an oil price of \$85/B, a CO₂ market price of \$40/mt and a 20% ROR, before. Source: Advanced Resources Int'l (2011).

of 20% (before tax).

** ROZ resources below existing oilfields in three basins; economics of ROZ resources are preliminary.

***Assuming 7 MMmt/yr of CO2 emissions, 90% capture and 30 years of operation per 1 GW of generating capacity; the U.S. currently has approximately 309 GW of coal-fired power plant capacity.

Advanced Power Plants Plan to Use EOR for CO₂ Storage

Southern Company's Kemper County IGCC Plant

- 582 MW fueled by Mississippi Lignite
- Will Capture 65% of CO₂
- Negotiating agreement to sell 1.1 to 1.5 million tons of CO₂ per year for EOR (170-225 MMcfd)
- Project expected to cost \$2.4 B and be operational by 2014.

*Source: Mississippi Power, Denbury Resources

Summit's Texas Clean Energy IGCC Project

- 400 MW IGCC with 90% capture
- Located near Odessa in Permian Basin
- Sell 2.5 million tons of CO₂ per year to EOR market
- Expected cost \$1.75 B; \$350 MM award under CCPI Round 3.

Source: Siemens Energy

Texas Clean Energy Project (TCEP): A 400 MW "Polygen" IGCC Plant

* Remaining 5% of revenue from byproduct sales

Linking CO₂ Supplies with CO₂-EOR Demand

* Capture from 200 GW of coal-fired power plants, 90% capture rate.

Linking CO₂ Supplies with CO₂-EOR Demand

The transportation costs for delivering CO_2 with large capacity pipelines ranges from \$4 to \$13 per metric ton, depending on distance and the capital recovery factor (CRF).

	350 Miles	600 Miles	1,000 Miles
Сарех	\$0.9 billion	\$1.6 billion	\$2.7 billion
Annual O&M	\$4.7 million	\$80 million	\$134 million
Cost/mt			
@ 10% CRF	\$3.60/mt	\$6.20/mt	\$11.40/mt
@ 12% CRF	\$4.10/mt	\$7.00/mt	\$12.90/mt

The key assumptions included in the transportation cost calculation include:

- CO₂ flow rate (112,000 mt/d; 2.1 Bcfd)
- Capacity factor (0.95)
- Pressure (inlet 2,100 psi; outlet 1,820 psi)
- No. of booster stations (20/33)
- Electricity price (5.5 ¢/kwh)
- Pipe size (32 in OD)

CO₂ Transportation Costs: 600 mile, 32 in. (OD) CO₂ Pipeline

Inputs				Outputs			
	CO2 Pipeline Prope	erties		Costs	Annual	Per Ton CO2	Project PV
CO2 mass	flow rate (tonnes/day)		112,000	Compression			
Intial CO2	Pressure Pinitial (MPa)		14.5	Capital	\$0	\$0.00	\$0
CO2 Pr	essure into pipeline		14.5	O&M	\$0		\$0
CO2 Pre	ssure out of Pipeline		12.5	Electricity	\$0	\$0.00	\$0
	∆ Pressure		2	Total Compresson	\$0	\$0.00	\$0
Pipeline	Operating Pressure		13.5				
Average Distance	Between Booster Stations	(mi)	30	Pipeline			
Include Booster	r Stations in Pipeline Cost	?	Yes	Capital			
Operating Temperat 82.2	ture of Pipeline (C) Range: C Non-Inclusive	-1.1 -	18.33	Pipeline	\$139,174,516	\$3.58	\$1,159,787,637
	Plant Properties	s		Booster	\$52,887,751	\$1.36	\$440,731,254
Ca	apacity Factor		0.95	Total	\$192,062,267	\$4.95	\$1,600,518,891
Hours	/Day of Operation		24	0&M			
	Location Properti	ies		Pipeline	\$57,989,382	\$1.49	\$0
Use Decimal	Source Latitude	-		Booster	\$22,036,563	\$0.57	\$0
Format. Valid for	Source Longitude	-		Total	\$80,025,945	\$2.06	\$0
Lat/long	Sink Latitude	-		Total Pipeline	\$272,088,212	\$7.01	\$1,600,518,891
Coordinates	Sink Longitude	-					
[Distance (mi)		600	Total Coata	¢070.000.040	¢7.01	¢1 COO E10 001
	Terrain		Grassland	Total Costs	\$272,088,212	\$7.01	\$1,000,518,691
	Financial Propert	ies		Other Statistics			
Price	of Electricity (kwh)		0.055	IPSCO Pipe Stats			
Options for	or Annualizing Figures	Capital	Recovery Factor	Pipeline Interna	Pipeline Internal Diameter 31.124		
Length of Project (yrs) 3		30	Outer Diameter 32				
Interest Rate 12%		12%	Reference N	Reference Number 249			
Capital Recovery Factor 0.12		Annual Electricity	v Used (kw/h)	400,664,777			
1	Inflation Indicies (Base Y	'ear=2005)		Tonnes CO2 Tran	sported/year	38,836,000	
Fabrica	ited Metal Products		137	Number of Booster S	Stations Needed	20	
Labo	or (Construction)		128	Number of Compress	or Trains Needed	0	
Prod	lucer Price Index		127.8				

Economic Value of CO₂ Enhanced Oil Recovery

The CO_2 -EOR industry would create a market for captured CO_2 emissions from the electric power and other industries, equal to over \$1 trillion* (less costs for CO_2 transportation).

The production of 80 billion barrels of oil with "Next Generation" CO_2 would help revitalize the U.S. economy and create large new sources of revenues:

- Overall revenues and economic activity equal to \$6.8 trillion.
- New Federal and state revenues, from royalties, severance taxes and income taxes of \$1.6 trillion.
- Markets for domestic services and sales of materials of \$2.1 trillion.

*Assumes 90% of total CO_2 demand is met by anthropogenic CO_2 ; oil prices of \$85 per barrel and CO_2 sales price of \$40/mt.

Distribution of Revenues from "Next Generation" CO₂-EOR

			Revenues		
	Revenue Recipient	Value Chain Function	Per Barrel	TOTAL	
			(\$)	(\$ billion)	
1.	Federal/State Treasuries	Royalties/Severance/Income Taxes	\$19.80	\$1,580	
2.	Power/Industrial Companies	Sale of Captured CO ₂ Emissions	\$14.10	\$1,130	
3.	Other	Private Royalties	\$7.70	\$620	
4.	Oil Industry	Return of/on Capital	\$16.90	\$1,350	
5.	U.S. Economy	Services, Materials and Sales	\$26.50	\$2,120	
		Total	\$85.00	\$6,800	

JAF 2012_035.XLS

Distribution of Economic Value of Incremental Oil Production from CO₂-EOR

			Federal/	Power	Private	
Notes		Oil Industry	State	Plant/Other	Royalties	U.S. Economy
1	Domestic Oil Price (\$/B)	\$85.00				
2	Less: Royalties	(\$14.90)	\$2.50		\$12.40	
3	Production Taxes	(\$3.50)	\$4.10		(\$0.60)	
4	CO2 Purchase Costs	(\$16.00)		\$14.10		\$1.90
5	CO2 Recycle Costs	(\$9.60)				\$9.60
6	O&M/G&A Costs	(\$9.00)				\$9.00
7	CAPEX	(\$6.00)				\$6.00
	Total Costs	(\$59.00)		-		
	Net Cash Margin	\$26.00	\$6.60	\$14.10	\$11.80	\$26.50
8	Income Taxes	(\$9.10)	\$13.20	-	(\$4.10)	-
	Net Income (\$/B)	\$16.90	\$19.80	\$14.10	\$7.70	\$26.50

Notes: (1.) Assumes \$85 per barrel of oil; (2.) Royalties are 17.5%; 1 of 6 barrels produced are from federal and state lands; (3.) Production and ad valorem taxes of 5%, from FRS data; (4.) CO_2 market price of \$40/tonne, including transport; 0.4 tonne of purchased CO_2 per barrel of oil; CCS would meet 88% of CO_2 demand; (5.) CO_2 recycle cost of \$16/tonne; 0.6 tonnes of recycled CO_2 per barrel of oil; (6.) O&M/G&A costs from ARI CO_2 -EOR cost models; (7.) CAPEX from ARI CO_2 -EOR cost models; (8.) Combined Federal and state income taxes of 35%, from FRS data.

Concluding Thoughts and Observations

- CO₂-EOR Needs CCS. Large-scale implementation of CO₂-EOR needs CO₂ supplies captured from power plants.
- 2. CCUS Benefits from CO_2 -EOR. The revenues (and cost avoidance) from sale of CO_2 to EOR (combined with other policies) can help accelerate the deployment of CCUS.
- 3. CO_2 -EOR Offers Large CO_2 Storage Capacity. CO_2 -EOR in oil fields and residual oil (ROZ) fairways can accommodate a major portion of the CO_2 captured from coal-fired power plants for the next 30 to 40 years.
- CCUS and CO₂-EOR Need Supportive Policies and Actions. Supportive policies and incentives for pre-built CO₂ pipelines would greatly accelerate the integrated use of CO₂-EOR and CCUS.

Questions?

Office Locations:

Washington, DC 4501 Fairfax Drive, Suite 910 Arlington, VA 22203 Phone: (703) 528-8420 Fax: (703) 528-0439

Houston, TX 11490 Westheimer, Suite 520 Houston, TX 77077 Phone: (281) 558-9200 Fax: (281) 558-9202

Knoxville, TN 603 W. Main Street, Suite 906 Knoxville, TN 37902 Phone: (865) 541-4690 Fax: (865) 541-4688

Cincinnati, OH 1282 Secretariat Court Batavia, OH 45103 Phone: (513) 460-0360 Email: scarpenter@adv-res.com

EPRI-MIT CCS COST WORKSHOP

"Transport, Storage, and Utilization: EOR Operator Perspective"

Michael E. Moore Vice President External Affairs and Business Development Blue Strategies LLC Executive Director NACCSA

> Palo Alto, CA April 25-26, 2012

CO₂-EOR Asset Cycle

CO₂ EOR – Industry Overview

- \Box CO₂ EOR has been in commercial use for ~ 40 Years
- US Industry Statistics
 - Currently injecting ~ 2 bcf/day of fresh CO₂ re-injection is about the same, 20% of which is from anthropogenic sources
 - Currently producing ~240,000 bbls/d of incremental oil, a nine-fold increase from 1986 levels of 28,000 bbls/d
 - 39-48 billion barrels of incremental oil are economically recoverable via CO₂ EOR⁽¹⁾
 - Recovery rates 7% 20% of OOIP
 - Each barrel of oil recovered requires approximately 6-7 mcf of original CO₂
- **CO**₂ Sourcing and Transportation
- It is all about the reservoir and oil characteristics
 - This is exploitation of known reserves
 - With the right reservoir and oil characteristics recovery is assured

Current CO2 EOR Operators						
			Incremental			
	Miscible		Production			
Company	Projects	Locations	(Mbo/d)			
Occidental	29	TX, NM	90.2			
Hess	6	TX	25.3			
Kinder Morgan	1	ТХ	24.2			
Chevron	4	CO, TX, NM	21.3			
Denbury Resources	13	MS, LA	17.8			
Merit Energy	7	WY, OK	13.6			
ExxonMobil	2	TX, UT	11.7			
Anadarko	4	WY	9			
Whiting Petroleum	3	TX, OK	6.9			
ConocoPhillips	2	TX, NM	5.5			
12 other independents	28	TX, OK. UT, KS, MI	14.9			
Total	99		240.4			
Natural vs. Industrial

- Cost of production, past and expected
- Qualities and existing infrastructure
- Contracting
- Geographic competitive issues
- Supply

Infra-structure Developed vs. Undeveloped

- 4000+ miles in operation
- Primarily natural sources
- Size of source anchors pipelines
- Expansions underway or being devised
- "Build it and they will come" not a gamble the industry will take

Existing CO₂ Transport Infrastructure

Likely Future CO₂ Pipeline Layout

Fig 2: A Framework Depiction of a Natonal CO2 Pipeline Network ("The Horseshoe"). The Shaded ellipses Represent Three Areas Where Very Large EOR/CCS Projects are Active or Proposed

Status of State/Federal Regulations Commercial Impacts

- All oil & gas states with ongoing CO₂-EOR are set, new areas problematic
- Unitization
- Eminent domain for storage and pipelines (does not enjoy FERC opportunities like natgas)
- EPA vs. States
- Pore space for storage

CO₂ Permitting-Management

Source: IOGCC

Contracting

- Term
- Quality
- Quantity
- Pressure
- Firm/not firm
- Balancing
- Third party sales
- Transaction reporting

Valuation

- Typically a % of the value of produced crude oil market value-with CO₂ delivered to the field facilities on an mcf basis
- Quality variables
- Delivered pressure
- Firm/not firm
- Variable volume/timing
- Carbon opportunities, obligations and risks

CO₂ Sources/Specs

Source: IOGCC www.iogcc.state.ok.us

Component	Kinder Morgan CO ₂ Pipeline Specs ⁵⁰	Ethanol Plant⁵¹	Great Plains Synfuels Plant ⁵²	Gas Processing Plant ⁵³	Coffeyville Resources Ammonia- UAN Fertilizer Plant ⁵⁴	Food-Grade CO ₂ Specs ⁵⁵
CO2	≥ 95 vol%	> 98 vol%	96.8 vol%	≥ 96 vol%	99.32 vol%	≥ 99.9 vol%
Water	≤ 30 lb/MMcf	Dry	< 25 ppm	≤ 12 lb/MMcf	0.68 vol%	≤ 20 ppmw
H ₂ S	≤ 20 ppmw		< 2 vol%	≤ 10 ppmw		≤ 0.1 ppmv
Total Sulfur	≤ 35 ppmw	40 ppmv	< 3 vol%	≤ 10 ppmw		≤ 0.1 ppmv
N ₂	≤ 4 vol%	0.9 vol%	0 ppm			None
Hydrocarbons	≤ 5 vol%	2300 ppmv	1.3 vol%	≤ 4 vol%		CH4: ≤ 50 ppmw; others: ≤ 20 ppmw
Hydrocarbons	≤ 5 vol%	2300 ppmv	1.3 vol%	≤ 4 vol%		CH4: ≤ 50 ppmw; others: ≤ 20 ppmw
0,	≤ 10 ppmw	0.3 vol%	0 ppm	≤ 10 ppmw		≤ 30 ppmw
Other	Glycol: ≤ 0.3 gal/MMcf		0.8 vol%			≤ 330 ppmw
Temperature	≤ 120°F	120°F	100°F	≤ 100°F	100°F	

Risk and Commercial Considerations for Industrially Sourced CO₂

- Typical BAU, full rights under mineral lease to use and leave CO₂ behind per permitting parameters
- Mineral leases are just that...
- Sequestration and term/type of obligations begins to change the rights/obligations subsurface
- As part of a carbon mitigation process, entanglement of the source's obligations with the EOR operators
- Undefined and unlimited risk depending on contracting and State/Federal regulations
- Private company vs. publically held

Current Developments/Drivers

- CCUS Methodology Released January 2012 by C2ES
- NEORI Phase I work done
- NRAP Developing subsurface technical "playbook"
- 45(Q) modifications efforts underway has prompted numerous studies on size and scope of EOR opportunity from industrial sources
- MWGA developing action plan for CO2 infrastructure and opportunity in the mid-central states
- California's Cap & Trade program instigated current interests and developments for CCUS and CO2-EOR –Storage utilization
- EPA's GHG Rule Implementation has instigated a closer look at CO2-EOR-Storage as first storage pathway for CCS implementation
- DOE's shift from CCS to CCUS, making CO2-EOR-Storage a preferred pathway
- Crude oil (WTI) pricing now in the \$80-\$110/bbl range
- ROZ is creating strong interest in large volume/long term CO2 sources
- CO2-EOR-Storage protocols for Registry use underway

Questions & Thank You!

Michael E. Moore

- VP External Affairs and Business Development CCS
- Blue Strategies LLC
- WWW.BLUESOURCE.COM
- Executive Director and Founding Board of Directors Member
- North American Carbon Capture Storage Association
- WWW.NACCSA.Org
- VP and Founding Board of Directors Member
- Texas Carbon Capture Storage Association
- WWW.TXCCSA.Org
- mmoore@bluesource.com
- Tel: 281-668-8475

CO₂ Sources/Specs

line Dakota Gas Exxon		Denbury	Kinder Morgan						
tion ND/SK WY		MS/LA	NM/TX						
Anthropogenic	Anthropogenic	Natural	Natural						
	Specification	s							
Carbon Dioxide 95% min 95% min 99% min 95% min									
< 100 ppm	< 30	< 30	< 30 lbs/MMSCF						
	lbs/MMSCF	lbs/MMSCF							
< 0.5%	NS	NS	NS						
< 1%	NS	NS	NS						
< 0.5%	NS	NS	NS						
NS	NS	NS	< 5%						
< 2.0%	< 20 ppm	< 10 ppm	< 20 ppm						
< 0.5%	< 10 ppm	NA	< 10 ppm						
< 1%	< 4%	< 0.5%	< 4%						
< 250 ppm	NS	NS	NS						
NS	< 35 ppm	< 35 ppm	< 35 ppm						
NS	< 0.3	NA	< 0.3 gal/MMscf						
	gal/MMscf								
NS	< 120 °F	< 90 °F	< 120 °F						
	Dakota Gas ND/SK Anthropogenic 95% min < 100 ppm < 0.5% < 1% < 0.5% < 1% < 2.0% < 2.0% < 1% < 250 ppm NS NS NS	Dakota GasExxonND/SKWYAnthropogenicAnthropogenicSpecification95% min95% min< 100 ppm< 30 Ibs/MMSCF< 0.5%NS< 1%NS< 0.5%NS< 0.5%NS< 0.5%NS< 0.5%NS< 0.5%S< 0.5%NS< 2.0%< 20 ppm< 1%< 4%< 250 ppmNSNS< 35 ppmNS< 0.3 gal/MMscfNS< 120 °F	Dakota GasExxonDenburyND/SKWYMS/LAAnthropogenicAnthropogenicNaturalSpecifications95% min95% min99% min< 100 ppm< 30< 30< 100 ppm< 30< 30< 0.5%NSNS< 0.5%NSNS< 0.5%NSNS< 0.5%NSNS< 0.5%NSNS< 0.5%NSNS< 0.5%< 20 ppm< 10 ppm< 0.5%< 10 ppmNA< 1%< 4%< 0.5%< 250 ppmNSNSNS< 35 ppmNSNS< 0.3NAgal/MMscf<< 90 °F						

Table 3. Specifications for selected US CO2 pipelines. Source: R. Hattenbach, Blue Source Ltd.

Techno-Economic Status of the Pre-Combustion Route

IEA / EPRI - Palo Alto - 25-26/04/2012

Authors: Sina Rezvani and Dave Ashok *Univ. of Ulster, WP1.2 Leader* Presenter : Carl Bozzuto for Flavio Franco *Alstom UK, SP1 Leader*

DECARBit

- A large scale European FP7 project (2008 to 2012)
- Focus on high potential, cost-efficient advanced capture techniques in pre-combustion schemes
- Enable production of hydrogen-rich fuel gases for use in gas turbines
- Enable pre-combustion plants by developing key gas turbine knowledge and components
 - Low emission gas turbines
 - Capable of burning near 100% hydrogen
- Take key pre-combustion tehnologies to pilot testing and experimental validation
- Improving the economics and reducing CO2 avoidance costs
 - Build on successful EU FP6 programmes ENCAP, CACHET, COACH, DYNAMIS

Partners

Total budget: 15.5 M Euros Duration: 4 years Coordinator: SINTEF Energy AS 16 core partners plus industrial contact group of 5 companies

SP1 and its interactions with Other SPs

DECARBit SP1 - <u>Cycles</u>

- WP1.1 Definition and analysis of four advanced cycles, integrating four different gas separation processes studied in DECARBit
 - CO₂ separation with CO₂ sorbent -Pressure Swing Adsorption - PSA
 - CO₂ separation with solvent and membrane contactor -Membrane Gas Desorption - MGD
 - Low temperature CO₂ separation
 - High temperature membrane air separation OTM (ITM)
- WP1.4 Definition and analysis of a Base Case cycle, with capture using selexol, within the European Benchmarking Task Force

Base cycle - CO₂ capture with selexol

Base Case Characteristics Gas turbine output: 283 MWe Gross electric power output: 457 MWe Ancillary power consumption: 104 MWe Net electric power output: 353 MWe Capture rate: 91.27 %

DECARBit SP1 - Economics

WP1.2 - Techno-economic analysis

- Costing of critical components
- Total capital investment of the four novel IGCC systems, according to the EBTF methodology
- Power plant cost sensitivity
- Calculation of the Cost of Electricity (COE)
 - = Breakeven Electricity Selling Price (BESP)
- Sensitivity analysis: COE vs. variations of several parameters
- Calculation of CO₂ capture and avoidance costs
- Refinement based on the results of the pilot plants in progress
- WP1.3 Communication with other SPs and application to other industries

Main Economic Assumptions

Parameter	Default value	Variability
Discounted Cash Flow	8%	4% to 12%
Specific Investment	2763 €/kW for LT 3463 €/kW for ITM	-10 to +50%
Fuel cost	3 €/GJ	±50%
O&M cost	€ 35.9-42.5 million / annum	±50%
Capacity factor	85% after 2 years operation (1 year 40%, second year 60%)	40 to 90%
Efficiency losses	0%	-2 to -5 % points
Construction time	4 years	
Budget allocation	20%, 30%, 30%, 20%	
Power plant lifetime	25 years	
Membrane lifetime	6 years	4-12 years

- The selected cycles operate at base load
- Reference year is 2008
- EPC costs bottom up and scaled up exponentially

Cost evaluation of the IGCC plant with OTM (ITM)

- Critical components (CC): Membrane modules and auxiliary equipment (AE)
- Cost of components given as a function of flux
- $I_{O2} = f(T, \Delta p, L, d, m, \sigma_{amb})$
 - \circ J₀₂: O2 flux, T: temp, Δp: pressure difference, L: membrane length, d: thickness of the dense layer, m: sweep gas flow rate, σ_{amb} : Ambipolar conductivity
- O&M = f (J_{O2}, LT, O&M_{AE})
 - LT Membrane lifetime, O&M: Operating and maintenance costs, O&M_{AE}: O&M of AE
- Three cost calculations:
 - Low: 100% integration, higher flux rates, no cryogenic N₂ requirements
 - Expected: 100% integration, low cryogenic N₂ requirements
 - High: 50% integration, high N₂ requirements (cryogenic N₂ to GT and gasifier)

Component costs of the IGCC plant with OTM

	€/m2	0.5 g/m2.s	1 g/m2.s	2 g/m2.s	3 g/m2.s	4 g/m2.s	6 g/m
	500	40	20	10	7	5	5
	1000	80	40	20	13	10	7
	1500	120	60	30	20	15	
	2000	160	80	40	27	20	
	2500	200	100	50	33	25	1
	3000	240	120	60	40	30	20
	3500	280	140	70	47	35	2
	4000	320	160	80	53	40	27
	4500	360	180	90	60	45	30
	5000	400	200	100	67	50	3 3
7	5500	440	220	110	73	55	<u></u>
	6000	480	240	120	80	60	4

Membrane cost in M€

€/m2	0.5 g/m2.s	1 g/m2.s	2 g/m2.s	3 g/m2.s	4 g/m2.s	6 g/m2.s
500	7.00	3.50	1.75	1.17		0.58
1000	14.00	7.00	3.50	2.33	1.75	1.17
1500	21.00	10.50	5.25	3.50	2.62	1.75
2000	28.00	14.00	7.00	4.67	3.50	2.33
2500	35.00	17.50	8.75	5.83	4.37	2.92
3000	42.00	21.00	10.50	7.00	5.25	3.50
3500	49.00	24.50	12.25	8.17	6.12	4.08
4000	55.99	28.00	14.00	9.33	7.00	4.67
4500	62.99	31.50	15.75	10.50	7.87	5.25
5000	69.99	35.00	17.50	11.67	8.75	5.83
5500	76.99	38.50	19.25	12.83	9.62	6.42
6000	83.99	42.00	21.00	14.00	10.50	7.00

Annualised cost of membrane replacement

Cost evaluation of the IGCC plant with Low Temp

- Components: Heat exchangers, pumps, compressors, expanders and distillation column
- Cost LT technology = $f(T, p, p_{CO2}, m, c)$
 - T: temp, p: syngas pressure, m: syngas flow rate, c: CO2 recovery rate, p_{CO2}: CO₂ partial p.
- O&M cost: No solvent losses -> Lower variable O&M costs
- Cost calculation in ECLIPSE, ASPEN and models available in the literature
 - Equipment size and type according to the mass and energy balance implemented within ECLIPSE
 - ECLIPSE highest cost (25% higher than ASPEN)
 - Literature lowest values
 - Costs reflecting values for different heat exchanger types

Component costs of IGCC w/ Low Temp.

The process has several heat exchangers

Component costs of IGCC w/ Low Temp.

							2008 k€	
						Module	Cost with ST HX	Cost with PF HX
						HX2	500	435
						P-Comp	6000	6000
						HX2A	1600	1392
						HX3	70	60.9
						E-Comp	2500	2500
						HX5a	1700	1479
	_					HX4	1550	1348.5
Module	Type	Feature 1	Unit 1	Feature 2		H-EXP	4000	4000
HX2	Heat exchanger	126.83	m2	10.5			1000	1000
P-Comp	Compressor	11230	kW	/			4250	1027
HX2A	Heat exchanger	888	m2	66		Cool CO2	4250	4250
HX3	Heat exchanger	0.9	m2	66		HV1	2550	2550
E-Comp	Compressor	3570	kW	1		Cool-PR	6500	4500
HX5a	Heat exchanger	983	m2	66	•	Reboiler	1200	1200
HX4	Heat exchanger	765	m2	66		P-EXP	1150	1150
H-EXP	Expander	4000	kW	1		E-Exp	580	580
CO2	Pump	430	m3/hr	1		Fan1	4550	4550
HX5b	Heat exchanger	1300	m2	66		S-Comp	4300	4300
H2-Heater	Heat exchanger	3700	m2	44		Distillation Column	5800	5800
Cool CO2	Heat exchanger	2.1	m2	66		Glucol Unit	600	2520
HX1	Heat exchanger	3002	m2	142		Plant Integration	7623.36	7623.36
Cool-PR	Heat exchanger	5800	m2	10		Total	61543	59886
Reboiler	Heat exchanger	970	m2	66		D		
P-EXP	Expander	1000	kW	/				
E-Exp	Expander	312	kW	1		1		
Fan1	Rotary blower	3500	kW	1		//		
S-Comp	Centrif-comp	6710	kW	1		7		
DC	Distillation Column	10X3	m	12		t/s		

Hence detailed study was made of the costs of heat exchangers

Cost evaluation of the IGCC plant with MGD

- CO₂ absorption as in the conventional Selexol system
- CO₂ desorption in a membrane contactor array instead of using a flash tank
 - Reduced pumping power for solvent regeneration
 - Non-selective membrane: PVTMS (Poly-vinyltrimethylsilane)
- Cost = $f(T, \Delta p, \dot{m}_{s'}, \dot{m}_{g'}, c, J)$
 - J: CO₂ molar flux through the membrane contactor into the solvent, T: temp, Δp : pressure difference, m_s: Solvent flow rate, m_g: gas flow rate
 - Membrane cost: 125 €/m² + housing + other auxiliaries
- Membrane area: 175.000 m² at a flux rate of 0.55g/m².s
 - Lean solvent feed: 5 °C, 37 bar, 1267.6 kg/s solvent + 10.1 kg/s dissolved gases
 - Rich solvent output: 60 °C, 37 bar, 1267.6 kg/s solvent + 100.8 kg/s dissolved gases

Component costs of IGCC w/ MGD

Component costs of IGCC w/ MGD

Equipment	Equip. Cost (k€)	Total Direct Cost (k€)						
CO ₂ Absorption Tower	8849	14159						
Power Recovery Turbine for CO ₂ Rich Solvent: Not Applicable for MGD								
Solvent Sump Tank	950	1520						
MGD Modules	21875	35000						
<u>Selexol</u> Pump	172.5	627.1						
Refrigeration System	3430	5488						
Heat Exchangers	2990	4784						
Misc. costs as in EBTF	5259	8415						
Total	43527	70000						

Total membrane cost as a function of specific membrane cost and flux

Cost €/m2	Flux 0.25	Flux 0.5	Flux 0.75	Flux 1	Flux 1.5	Flux 2
50	19.20	9.60	6.40	4.80	3.20	2.40
75	28.80	14.40	9.60	7.20	4.80	3.60
100	38,40	19.20	12.80	9.60	6.40	4.80
125	48.00	24.00	16.00	12.00	8.00	6.00
150	57.60	28.80	19.20	14.40	9.60	7.20
175	67.20	33.60	22.40	16.80	11.20	8.40
200	76.80	38.40	25.60	19.20	12.80	9.60
225	86.40	43.20	28.80	21.60	14.40	10.80
250	96.00	48.00	32.00	24.00	16.00	12.00
275	105.60	52.80	35.20	26.40	17.60	13.20
300	115.20	57.60	38.40	28.80	19.20	14.40

Summary of costs

DE

Cost evaluation of the IGCC plant with PSA

Cost = $f(Y, t, p_d, p_{CO2}, m, c, x)$

- Y: adsorption isotherm of CO₂ (Nm³/kg), t: residence time, p_d: design pressure, p_{CO2} : CO₂ output p. m: gas flow rate, c: capture rate, x: cost of sorbent
- The above parameters determine the number of vessels, vessel size, materials, valves and piping
- Cost calculation with carbon steel and carbon steel with different claddings (Carbon steel adequate according to Nelson Curve)
- Activated carbon as sorbent
- Operating cost
 - Sorbent warm-up, moisture removal, reactivation costs

Component costs of IGCC w/ PSA

Equipm	ent	Specification	Quantity	Investment (M€)
Adsorption Column (G	Carbon Steel)	10 m Tall x 6 m Diameter	6	10.8
Total direct cost (TDC) of Adsorption Col	umns installed	6	19.5
Activated Carbon		282.6 <u>m</u> ³ / bed, @ 1 €/ kg	848 tonnes	0.900
TDC of Adsorption ma	iterials			1.44
Automatic Valvos	Operating	Eiro Safo 200#	80	2.1
	Redundant	File Sale, SOU#	30	2.1
Manual Valves,	150	1.35		
TDC of Valve and othe	er instruments (200		6.9	
TDC of Miscellaneous	Equipment		5.25	
TDC of PSA plant			33.09	

Total Direct Costs

Annual Operating Costs

Parameter	Value
Cost of Adsorbent (AC) warm-up	0.2 € / kg
Feed / Total duration of a cycle	6 / 20 minute
Number of cycles in a day (4 modules)	240 cycles
Adsorbent (AC) Quantity (20% in excess for periodic replenishment)	1005 tonnes
Period of moisture removal from Adsorbent	1500 cycles
Annual cost of moisture removal	1.8 M€
Period of Reactivation of Activated Carbon	10 years
Cost of reactivation	0.6 € / kg
Annual cost of reactivation	0.06 M€
Miscellaneous	1.6 M€
Total Annual OPEX	3.46 M €

Main Techno-economic results

			DEC	ARBit	EBTF		
Parameter	Unit	PSA	MGD	LT	ITM	with CCS	w/o CCS
Net electricity output	MW	370.9	379.1	396.5	365.1	352.7	391.5
Efficiency	%	36.6%	39.0%	40.2 %	37.7%	36.7%	46.9%
CO ₂ emitted	kg/MWh	136.6	118.8	208.9	90.1	88.9	757.6
CO ₂ Captured	kg/MWh	838.0	795.7	678.5	897.0	864.5	0.0
Total plant cost	M€	1147	1187	1096	1264	1134	926
Specific investment	€/kWe net	3095	3129	2763	3463	3213	2371
Annual fuel costs	M€/yr	82.8	78.7	80.0	78.5	78.9	66.6
Fixed O&M costs	M€/yr	27.6	27.5	28.0	26.7	25.6	22.1
Variable O&M costs	M€/yr	11.1	14.7	7.9	15.8	8.57	5.8
BESP	€/MWh	85.7	85.1	77.8	90.6	86.0	64.6
Cost of CO ₂ avoided	€/tonne	35.3	33.2	25.1	40.4	32.3	NA
Cost of CO ₂ captured	€/tonne	25.1	25.7	19.5	29.0	23.9	NA
Capture rate	%	86.0%	87.0%	76.5%	91.0 %	91.0%	NA

Contingency: 15% (higher values recommended for novel cycles) BESP= Breakeven electricity selling price (equivalent to COE) SI includes construction costs

Sensitivity Analysis - COE

EL: Possible efficiency losses 2.5 and 5 % points

Capacity factor

Comparing technologies

Sensitivity analysis - CO₂ Av. Costs

Conclusions

- Low temperature technology best result but already well optimised within DECARBit
- There is still room for improvement with regard to OTM (ITM) integrated IGCC technology
 - Improved power plant configuration and OTM integration
 - Higher flux rates (Membrane development)
 - Higher operating pressures
- MGD: higher flux rates from the pilot plant
- PSA: lowest capital investment, with the challenges:
 - to improve efficiency (high power consumption)
 - to increase capture rate

Thank you !

<u>s.rezvani@ulster.ac.uk</u> <u>flavio.franco@power.alstom.com</u>

Capture Plant Cost Variations

		Overall Cost (TDC) in M€			
		(Equipment Cost + Install. Cost)			
		PSA	MGD	LT	ITM
Cost Sensitivity of CO2 Capture Plant	Low	25.0	49.0	42.0	38.85
	Medium	33.1	70.0	60.0	59.58
	High	46.0	119.0	78.0	101.70
Total direct IGCC plant cost without CCS		687.1	674.3	651.2	720.0
Total direct IGCC plant cost with CCS	Low	712.0	723.3	693.2	758.85
	Medium	720.7	744.3	711.1	779.58
	High	733.0	793.3	729.2	821.70

Total direct costs: Excluding contingencies, construction and indirect costs

OTM plant cost variations

		Low cost	Expected Cost	High Cost
1	Air compressor	0.0	0.0	18.0
2	O ₂ Compressor	9.0	11.0	14.0
3	Burner modification	0.8	1.0	1.2
4	Heat exchangers	1.8	2.0	2.4
5	Membrane module	27.0	40.0	49.0
6	Cryo. N ₂ plant	9.0	19.0	40.0
	Total cost	47.6	73.0	124.6

- At fixed techno-economic assumptions
- Cost variation according to plant configurations
 - OTM high variation depending on plant configurations: integration, membrane costs and cryogenic N₂ plant configuration options

Sensitivity analysis - COE

Acronyms

- LT: Low temperature technology
- MGD: Membrane Gas Desorption (using membrane Contactors)
- PSA: Pressure Swing adsorption
- OTM: Oxygen/Ion Transport Membrane (or ITM)
- SI: Specific Investment
- O&M: Operating and maintenance cost
- EL: Efficiency loss in 2.5 and 5 %-point
- CF: Capacity factor
- BESP: Breakeven Electricity Selling Price (=COE)
- EBTF: European Benchmarking Taskforce

Evaluating Economics of Emerging Processes

Abhoyjit S. Bhown

CCS Cost Workshop Palo Alto, CA April 25-26, 2012

Technical Readiness Level (TRL)

Technology Readiness Level (TRL)			
tion	9	Normal commercial service	System Test, Launch & Operations
Demonstrat	8	Commercial demonstration, full-scale deployment in final form	System/Subsystem TRL 8 TRL 7
	7	Sub-scale demonstration, fully functional prototype	Technology Demonstration TRL 6
Development	6	Fully integrated pilot tested in a relevant environment	Technology Development TRL 5
	5	Sub-system validation in a relevant environment	Research to Prove Feasibility
	4	System validation in a laboratory environment	Basic Technology Research TRL 1
Research	3	Proof-of-concept tests, component level	
	2	Formulation of the application	
	1	Basic principals observed, initial concept	Source: NASA

TRL is <u>NOT</u> based on economic viability!

TRL of Post-Combustion Capture R&D

Cost Issues

- Even for "Near-Term" MEA, reports vary considerably
 - Energy consumption varies, <3.0 to >6.0 GJ/tonne CO₂
 - Costs varies, ~\$60 to >\$100/tonne CO_2
- Cost impacted by technical assumptions in process in addition to financial assumptions.
- Early-stage technologies tend to have high technical uncertainty, lots of unknowns, and unbounded optimism of inventor. This leads to significant variance in cost estimates.
- What can we do?

How Early Stage (TRL 1-3) Developers Are Working Today

- DOE drives significant early-stage research, and performance targets are represented as max COE increase
- Costs for near-term technologies (TRL 5-7) are dominated by energy consumption, and new technologies (TRL 1-4) almost exclusively first focus on energy consumption
- Energy consumption (of major unit operations) is relatively straightforward to analyze since it involves thermo
- Cost analysis is not straightforward, nor consistent, nor well-defined
- Hence, much early-stage work today focuses on energy consumption

An Example: Adsorption Processes

- Adsorption onto binding sites
- Easy to adsorb/Hard to desorb (high ΔH)
- Less Stable, high capacity, high selectivity
- Binding sites can be poisoned

A Simple Analysis...

- Assume mass and thermal equilibrium in bed, i.e., neglect all mass and heat transfer resistance
- Energy consumption depends only on final pressures and temperatures
 - Sensible heat: heats and cools bed. Provides driving force to produce CO₂
 - Desorption heat: desorbs CO_2 (equal to heat of adsorption, ΔH). Actually produces the CO_2

$$Q = \underbrace{(C_p \rho_{sorbent} \Delta T + \Delta h_{CO2} \Delta q_{CO2} + \Delta h_{N2} \Delta q_{N2})}_{\text{Sensible heat}} CO_{2 \text{ Pr oduced}}$$

Besorption heat requirement requirement

... Applied to a Power Plant

 We look at the equivalent energy as a measure of parasitic load*

$$W_{eq} = \left(0.75Q \cdot \eta_{carnot} + W_{comp}\right)$$

 Minimum heat requirement is not necessarily minimum parasitic load or minimum COE increase (not every BTU is created equal)

*From Gary Rochelle's group, UT Austin

Some Results

- For some class of sorbents, we see ~5% reduction in energy consumption by operating under 0.1 bar
- Is vacuum worth it? Should chemists be designing materials suitable for vacuum?

What Would Help Early-Stage Technology Developers (TRL 1-3)

- Very low cost (free?), open, reference plant(s)
- Very low cost (free?), open, easy-to-use, specific, costing routine(s) – even if error bars are large
- Reporting of key performance and cost metrics on same basis – even if error bars are large
- Does run the risk of results that don't mean much, except perhaps for relative comparisions
- TRL 4-7 and TRL8-9 need more sophisticated, detailed approaches.

© 2012 Electric Power Research Institute, Inc. All rights reserved.

Together...Shaping the Future of Electricity

Evaluating Economics of Emerging Carbon Capture Processes

CCS Cost Workshop April 25-26, 2012

John Wimer Director, Office of Program Planning & Analysis

Presentation Outline

- Purpose and Scope of NETL's Evaluations of Emerging Carbon Capture Technologies
- Examples of NETL Studies
- Keys to Estimating Costs for Emerging Capture Technologies
- Challenges
- Call for Papers 2012 AIChE Annual Meeting

Evaluating the Performance of Emerging Technologies

Emerging Carbon Capture Processes *Purpose of NETL Evaluations*

Guide and evaluate DOE's Carbon Capture R&D Program

- Compare best potential of emerging technology with R&D goals and competing technologies, including current state-of-the-art
 - Metrics: emissions, COE (capex, O&M, IRR), efficiency
 - Screening studies provide initial check of potential to meet R&D goals
 - Aids in setting technically supportable R&D goals
 - Baseline studies establish current SOA performance
- Identify integration and performance requirements
 - Technology pathway studies examine integrated performance of multiple emerging technologies and compare alternative pathways
- Forecast the potential national benefits of successful R&D under various market and regulatory scenarios
 - Metrics: environmental (e.g., emissions reductions), economic (e.g., cost savings, employment), energy security (e.g., import displacement)

Emerging Carbon Capture Processes Scope of NETL Evaluations

- Primary focus is on coal conversion, although many technologies also apply to natural gas and industrial processes
 - Pre-, post- and oxy-combustion
 - Gasification and combustion pathways
 - Electric power and coproduction (fuels, chemicals)
 - Electric utility and industrial applications
- CO₂ fate: primarily direct geologic storage, but utilization also considered (e.g. EOR, materials)
- Large and diverse R&D portfolio
 - ~ 70 capture technology concepts
 - Maturity ranges from laboratory tests to commercial demos
 - Multiple applications and operating conditions

Candidate Emerging CO₂ Capture Technologies

Process & Cost Engineering

1. Process Simulation (Aspen Plus®, Thermoflow)

- All major chemical processes and equipment are simulated
- Detailed mass and energy balances
- Performance calculations (products, efficiency, emissions)

2. <u>Cost Estimation</u>

- Capital and O&M costs
- Based on inputs from process simulation
- Vendor quotes, EPC database, published data/correlations, commercial software, DOE RD&D projects, internal estimates, R&D targets

Steam Cycle

3. Discounted Cash Flow Analysis

- Current dollar analysis using NETL's Power Systems Financial Model
- Project finance structure
- Capital expenditure and operational schedule
- Taxes and depreciation
- Inflation and escalation rates

Classes of NETL Cost Estimates

Process flow diagrams (PFDs) and piping and instrument diagrams (P&IDs) are the primary documents that define project scope. Association for the Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R-97 describes the AACE cost estimate classification system.

New Plants

R&D Goals for 2nd Generation CCUS Systems

- Representative CO₂ storage costs in a ravorable saline aquifer

TS&M = Transport, Storage & Monitoring TIT = turbine inlet temperature WGCU = warm gas cleanup ITM = ion transport membrane USC = Ultra supercritical FGD = Flu Gas Desulfurization

Fossil Energy R&D Program Driving Down the Cost of Capturing CO₂ for Coal Power Plants

Capture costs ($\frac{1}{2}$ compressed to 2,200 psig at the plant gate. They exclude costs for transport, storage and monitoring of CO₂.

Integrated Gasification Combined Cycle (IGCC), Integrated Gasification Fuel Cell (IGFC), Pulverized Coal (PC)

Future Oil Prices May Support CO₂ Prices for EOR that are Equal to or Above CO₂ Capture Costs

From 2008 to 2011, the market price of CO₂ (expressed in \$/MCF) for EOR, quoted at the Denver City, TX "hub", varied between 1.4% and 3.3% of the WTI Crude oil price (expressed in \$/bbl). Restating this correlation, the market price of CO₂ (expressed in \$ per metric tonne) would be 27% to 63% of the crude oil price (\$/bbl). Source: Chaparral Energy "US CO₂ & CO₂ EOR Developments" Panel Discussion at CO₂ Carbon Management Workshop December 06, 2011

Lowest Cost Power Generation Options MIDWEST (sea level): 2nd Gen NGCC versus 2nd Gen Coal (Bituminous)

2nd Gen NGCC uses J-Frame turbine, conventional carbon capture; Assumes capacity factor = availability (i.e. all plants including NGCC are base load). June 2011 Dollars; Assumes bituminous coal at delivered price of \$2.94/MMBtu

Macroeconomic Analysis

- National Energy Modeling System (NEMS)
 - DOE/EIA's official energy-economic model
- Energy Velocity Suite
 - Licensed database of U.S. power plants
- NETL/WVU Econometric Input/Output Model
 - Used to estimate GDP and employment impacts
- IMPLAN
 - Input/output employment impacts
- GAMS
 - Optimization modeling
- Independently Developed Models and Analyses

The Benefits Division Analysis Process

Keys to Estimating Cost of Emerging Carbon Capture Processes

- Capture technology development stage
 - Cost estimates require design and performance data
 - Available data a function of development stage: concept to commercial demo
 - Important to understand basis for design and performance assumptions
- Standard design basis guide consistent basis for comparison
 - System boundaries
 - Plant size, capacity factor
 - Application requirements (e.g. emissions, load follow)
 - Capital cost accounts
 - O&M cost accounts
 - Financial methodology

NETL's Quality Guidelines for Energy System Studies

- Specifications for Selected Feedstocks
- Process Modeling Design Parameters
 - E.g. ambient conditions, component design and performance
- Energy Balances and Enthalpy Reference States
- CO₂ Impurity Design Parameters
- Technology Learning Curve (FOAK to NOAK)
- Cost Estimation Methodology for NETL Assessments of Power Plant
 Performance
 - Consistent set of capital and O&M cost elements
 - Consistent set of financial assumptions, with options (e.g. high and low risk)
- Estimating Carbon Dioxide Transport, Storage, and Monitoring Costs

Evaluation Options

- Levels of studies e.g. order of magnitude, screening, definitive
- Level of simulation e.g. black-box vs modeling and sizing
- State of technology maturity
 - Contingencies
 - FOAK vs NOAK

IGCC Capture Process Illustration

Capture Process Cost Includes Multiple Subsystems

Capture System Cost is Function of Capture Process Understanding Example: IGCC plant with membrane capture

- Analysis must consider costs of subsystems associated with the capture system
- Cost is associated with a given energy system concept and application
 - Example is an IGCC power plant with humid gas cleaning
 - Specified fuel gas delivery T/P (gas turbine)
- Cost requires capture technology design, performance and cost information
 - Hydrogen membrane example: membrane material, fabrication, surface configuration, permeances, degradation, etc)
- Membrane system design and cost estimated from
 - Membrane surface area required
 - Membrane pressure vessel design and cost
 - Membrane cost (new and replacement)
 - Syngas cleaning (if required to meet life requirement)
 - Fuel recovery and compression subsystem design and cost

Illustration of Available Data for Estimation

Integrated System Design, Performance, Cost

Fuel recovery / CO₂ Purification

Membrane / Module Design & Cost

Commercial Membrane Element Life Performance / Cost

Gas cleaning requirements

Membrane Segment Performance -Syngas related to test facility: coal, gasifier, gas cleaning

> Membrane Configuration and Manufacturing Concept

Material life tests – simulated syngas

Sample material tests; Idealized gas stream (e.g. H_2 & inert or H_2 , CO_2 , H_2O); Limited operating T,P data (inc. membrane pressure drop)

Concept – screening analysis

NETL

Time

Performance, and Cost Understanding

Available Process Design,

Process Contingencies

Process contingencies are associated with the development status

State of Technology Development	Process Contingency (Applied to Subsystem BEC)	
	AACE*	
New Concept with limited data	40+%	
Concept with bench-scale data	30% to 70%	
Small pilot plant data	20% to 35%	
Full-size modules have been operated	5% to 20%	
Process is used commercially	0% to 10%	

- When emerging technology development stage is pre-pilot plant, projected design and performance are used as basis for cost; knowledge and data limitations recognized; sensitivity analysis of key process parameters used to estimate cost
- AACE recommendations are consulted in conjunction with engineering judgment. A 20% process contingency is frequently applied for emerging technologies.

Cost Estimating Challenges

- Knowledge required for design and projecting performance of emerging technologies is not available
 - Requires projecting design and performance
 - Important to document assumptions
- Cost estimates are frequently underestimated due to incomplete representation of the capture process
 - E.g. processing of input and output process streams, systems integration
- Establishing the appropriate basis for the cost estimate (e.g. application, system boundaries, financial methodology)
- Establishing the appropriate metric that addresses the question being asked

NETL Perspective

Evaluating Economics of Emerging Carbon Capture Processes

- Cost estimates for emerging technologies depend on the question being asked
- NETL systems analyses
 - Guide and evaluate R&D
 - Establish cost and performance goals
 - Compare best potential of emerging technology with R&D goals and competing technologies
 - Identify integration and performance requirements
 - Forecast the potential national benefits of successful R&D
- Two important features of NETL cost estimates
 - Understanding the development status and developing a technically sound basis for process design and performance
 - Maintaining a standard design basis guide
- Challenges
 - Limited knowledge and data for emerging technologies
 - Establishing the appropriate basis for the cost estimate

AIChE Call for Papers Annual Meeting in Pittsburgh, PA Oct. 28 to Nov. 2, 2012

- Topical D: Accelerating Fossil Energy Technology Development Through Integrated Computation and Experimentation program
- System Analysis Methods to Evaluate and Compare the Economics of CCUS Technologies
 - Co-Chairs: Mark Woods (<u>mark.woods@CONTR.netl.doe.gov</u>) and John Wimer (john.wimer@netl.doe.gov)
- System Analysis Gas Separation Processes Utilizing Solvents, Sorbents & Membranes
 - Co-Chairs: Mike Matuszewski (michael.matuszewski@netl.doe.gov) and John Wimer (john.wimer@netl.doe.gov)
- Deadline for submissions is Wednesday, 5/2/12
- To submit, go to http://aiche.confex.com/aiche/2012/cfp.cgi

ADDITIONAL INFORMATION

System Analysis – Methods to Evaluate and Compare the Economics of CCUS Technologies

- Wednesday, 10/31/2012 3:30 6:00
- The objective of this session is to describe various methodologies used to evaluate the cost and performance of carbon capture, utilization and sequestration (CCUS) technologies and discuss how they might be standardized to permit more meaningful comparisons among different studies. Major topics include design basis specifications, definition of cost and performance metrics, and techniques for assessing economic feasibility. Questions that may be addressed include:
 - What aspects of a design basis could be standardized for CCUS studies: ambient conditions, fuel specifications, capacity factors, finance structures, carbon dioxide purity, emergency venting, storage/utilization specifications, etc.? How might a standard design basis be complicated by environmental regulations that vary internationally?
 - Commonly used terms and metrics are frequently defined differently across studies, e.g., capital costs, operating and maintenance costs, cost of electricity, cost of capturing/avoiding CO2. Can definitions for these terms be standardized?
 - What are the most frequently used methods to calculate metrics that measure economic performance, such as cost of electricity and cost of avoiding carbon dioxide emissions? How do techniques differ between retrofit applications and greenfield plants? How should carbon dioxide utilization opportunities be factored into economic evaluations, e.g., selling carbon dioxide for enhanced oil recovery?
 - What techniques should be used when assessing conceptual or non-commercial technologies? How should process contingencies and learning curves be applied? How should developmental cost targets, first-of-a-kind costs, and nth-of-a-kind costs be related and compared?

System Analysis – Gas Separation Processes Utilizing Solvents, Sorbents & Membranes

- Wednesday, 10/31/2012 12:30 3:30
- The objective of this session is to evaluate the cost and performance of solvent, sorbent & membrane technologies in the context of carbon capture, utilization and sequestration (CCUS). Major topics include: CO2 separation from fossil energy power plants; process and technology development and improvements; optimization and comparison of CCUS processes. Questions that may be addressed include:
 - What are the major cost and performance consequences of solvent-, sorbent- & membrane -based CCUS technologies? How is the cost of electricity impacted after implementing CCUS? What is the resultant cost to capture carbon emissions? To what degree are plant heat rate, water use, and other relevant operations affected by implementation of CCUS?
 - What promising developmental pathways have been identified? What is the relative potential of these technologies for CCUS? Are these developmental pathways cost- or performance-limited?
 - How may major bottlenecks in conventionally-proposed CCUS processes be removed? Can these bottlenecks be attributed to technology limitations or sub-optimal process design choices? What techniques might be used for systematic optimization of these processes?
 - What market conditions are required to motivate the implementation of CCUS? What cost of CO2 capture would result in favorable economics for enhanced oil recovery? What carbon tax level would be required to motivate CCUS?
 - How might CCUS technology help to address recently proposed environmental regulations on non-CO2 emissions?

Hydrogen Membrane Capture Illustration

Limited data are available for emerging capture processes

System: Reference IGCC plant with Humid Gas Cleaning and 90% CO₂ capture

Screening Criteria:

- Shifted syngas (~ 97% CO shift)
- Syngas composition (humid gas sulfur and other trace species)
- Operating T, P (syngas T, P; fuel gas delivery T, P
- Component separation and flux (H_2 , CO_2 , H_2O permeating)
- Membrane surface configuration (e.g., shell & tube)
- Membrane material and fabrication
- Membrane life
- Membrane cost
- Fuel recovery system cost

Cost Estimation Approach

- Adjustments from Reference Costs
 - Scales reference costs based on key design parameters
 - Plant output (gross and net), capacities, flow rates, number of trains, thermal duties, temperatures, pressures, etc.
 - Factors to the cost basis date
 - Adjusted for project location and specific labor market
 - Modified to incorporate project specific requirements
 - Regularly calibrated to incorporate the most current data

• EPC cost database

- Extensive database of equipment, material, and installation costs
- Continually updated with most current project information, including quotations and purchase orders
- Estimated costs benchmarked / validated against EPC cost database including recent and on-going projects

Cost Library Howard Herzog, Christopher Short, Kathryn York

WWW.GLOBALCCSINSTITUTE.COM

GLOBAL CCS INSTITUTE

CCS COST LIBRARY: PURPOSE

- Increase access to cost studies
- Help providers of cost estimates share studies more widely
- Improve collaboration
- Provide an historical repository

CCS COST LIBRARY: STRUCTURE

Catalog system

- Article access
 - Directly downloadable if possible
 - Links to original host

Metadata includes

- Title, Authors, Organisation, Publisher
- Abstract, Date, Pages
- Region, Project affiliation
- Document type, rights, language
- Keywords
 - large-scale integrated project, capture, transport (pipeline, shipping), storage (saline aquifer, EOR)
 - Demonstration, FOAK, NOAK, Learning curve
 - IGCC, PCC, oxy-fuel, NGCC CCS
 - Bituminous coal, lignite, natural gas
 - etc

CCS COST LIBRARY: PROCESS

- Two-stage IT process
- Stage 1: Prototype
 - Simple search
 - Simple listing
 - Sortable headings
 - Limited metafields
 - Links to original article only

CCS COST LIBRARY: PROTOTYPE

CCS Library: Costs

Filter:

Title 💠	Authors \$	Date 🔶	Pages 🖨	Publisher 💠	Short Abstract 🗢
Cost assessment of fossil power plants equipped with CCS under typical scenarios	Leandri, Jean- Francois; Paelinck, Philippe; Skea, Adrian; Bohtz, Christian	2011/06/01	20	Alstom	The work is based on the experience developed by Alstom on conventional turnkey plants and on the last five years of experience gained on CCS demonstration plants and reference designs. Different capture technologies are considered in the evaluation and comparison of the impact of CCS on future commercial fossil-fuelled power plants (coal and gas).
Expert elicitation of cost, performance, and RD&D budgets for coal power with CCS	Chan, Gabriel; Anadon, Laura D; Chan, Melissa; Lee, Audrey	2010/09/28	8	Belfer Center for Science and International Affairs Harvard Kennedy School, Harvard University	There is uncertainty about the ex-ante returns to research, development, and demonstration programs in the United States on carbon capture and sequestration (CCS) technology. To quantify this uncertainty, we conducted a written expert elicitation of thirteen experts in fossil power and CCS technologies from the government, academia, and the private sector. We asked experts to provide their recommended budget and allocation of RD&D funds by specific fossil power and CCS technology and type of RD&D activity for the United States.
CO2 control technology effects on IGCC plant performance and cost	Chen, Chao; Rubin, Edward S; Berkenpas, Michael	2006/09/25	12	Carnegie Mellon University	As part of the USDOE's Carbon Sequestration Program, we have developed an integrated modeling framework to evaluate the performance and cost of alternative carbon capture and storage (CSS) technologies for fossil-fueled power plants in the context of multi-pollutant control requirements.
Realistic costs of carbon capture	Al-Juaied, Mohammed; Whitmore, Adam	2009/07/01	73	Belfer Center for Science and International Affairs Harvard Kennedy School, Harvard	Costs for pre-combustion capture with compression are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant

CCS COST LIBRARY: STAGE 2

Lists

All resources

- Freely available resources
- Licenced resources
- Onsite resources

Subject guides Journal resources

643 resources found

Show by title	ALL - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0- 9
Displaying page	1 2 3 4 5 65

1. 🗮 Free passengers to NSW 1826-1837

Society of Australian Genealogists: Contains a searchable database of 36,000 names of free passengers, crews & military arriving by passenger, merchant or whaling vessels to New South Wales between 1826 and 1837.

2. Index to Colonial movements 1827-1853

Descendents of Convicts' Group, Inc: Index to approximately 10,000 convict movements in the Colony of New South Wales (covering present day New South Wales, Queensland, Tasmania and Victoria. Entries comprise convict's names or alias, the date of the movement, and the place from which the convict was moved.

3. 🚳 A2A : Access to Archives

Great Britain. National Archives: The A2A database contains catalogues of archives held across England and dating from the 900s to the present day. These archives are cared for in local record offices and libraries, universities, museums and national and specialist institutions across England, where they are made available to the public.

4. 🚱 AAT: Art & Architecture Thesaurus On Line

CCS COST LIBRARY: STAGE 2

Browse resources in categories

Browse category	No category selected	Our subject guides
	Please select a category from the list on the left.	We don't seem to have written any guides for this topic. Try
🕀 Asia Pacific		another topic, or see this list of
Biography		<u>all guides</u> .
🖽 Business & Commerce		
E Communications & Media		
Encyclopedias & Dictionaries		
🗄 Genealogy		
🕀 Librarianship & Archives		
🗉 Science & Technology		
Social Sciences		

CCS COST LIBRARY: WHERE

- Use Institute platform to deliver
 - <u>http://www.globalccsinstitute.com/publications/ccs-library-costs</u>
- Is part of a broader CCS library being established
- EOR publications next?

CCS COST LIBRARY: YOUR ROLE

- Collaborate to construct
- Provide papers:
 - Paper itself for cataloging and hosting
 - Paper for cataloging but not hosting
 - Catalog details
- Criteria
 - Age: 10 years? 5 years? Indefinite?
 - Comprehensive? Single Technology? Components?
 - is the report credible? is it relevant?

www.globalccsinstitute.com