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Abstract

A promising method to mitigate global warming is injecting CO 2 into deep saline
aquifers. In order to ensure the safety of this method, it is necessary to understand
how much CO 2 can be injected into an aquifer and at what rate. Since offsetting
nationwide emissions requires storing very large quantities of CO2, these properties
must be understood at the large scale of geologic basins.

In this work, we develop simple models of storage capacity and injection rate at
the basin scale. We develop a storage capacity model that calculates how much CO 2
an aquifer can store based on how the plume of injected CO 2 migrates. We also
develop an injection rate model that calculates the maximum rate at which CO 2 can
be injected into an aquifer based on the pressure rise in the aquifer. We use these
models to estimate storage capacities and maximum injection rates for a variety
of reservoirs throughout the United States, and compare the results to predicted
emissions from coal-burning power plants over the next twenty-five years and fifty
years. Our results suggest that the United States has enough storage capacity to
sequester all of the CO 2 emitted from coal-burning plants over the next 25 years.
Furthermore, our results indicate that CO 2 can be sequestered at the same rate it
is emitted for this time period without fracturing the aquifers. For emissions over
the next 50 years, however, the results are less clear: while the United States will
likely have enough capacity, maintaining sufficiently high injection rates could be
problematic.
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Chapter 1

Introduction

There is growing and, by now, almost overwhelming evidence that anthropogenic car-

bon dioxide emissions are a main contributor to global warming [39]. Unless these

emissions are aggressively reduced, studies predict that atmospheric CO 2 concentra-

tions will rise throughout the century and exacerbate the problem [31, 91]. Drastically

reducing CO 2 emissions, however, is a major challenge. This is because emissions are

largely due to burning fossil fuels, and fossil fuels supply 85% of the primary power

consumed on the planet [30].

The solution to reducing emissions will likely not involve discontinuing the use of

fossil fuels. This is because renewable energy technologies like wind or solar power

have numerous shortcomings such as high cost and low areal power density. Nu-

clear energy is an unlikely panacea due to well-known problems of waste disposal

and weapons proliferation [30]. As a result, an attractive solution to reducing CO 2

emissions is not to stop using fossil fuels, but rather to effectively store the CO 2 they

produce until a broad portfolio of other energy resources is more fully developed.

A promising technology for storing CO 2 is geological carbon sequestration (GCS) [49,

76]. In GCS, CO 2 is captured and stored away from the atmosphere in deep geologic

reservoirs like saline aquifers. After injection, a number of mechanisms will cause the

CO 2 to remain trapped for long times, in some of the same ways that the natural

gas or oil was originally trapped. The recent MIT Coal Study identified GCS as the

critical enabling technology for coal in a carbon-constrained world [61].



While GCS is a promising technology, a big challenge is the scale at which it must

be implemented. In order to offset current worldwide emissions of about 28 Gton

of CO 2 per year [57], large amounts of CO 2 must be injected at high rates. This

observation raises questions about what mass of CO 2 the subsurface can store [6] and

what injection rates it can sustain. Due to the large quantities and rates involved,

answering these questions requires understanding GCS at the large scales of geologic

basins.

1.1 Deep Saline Aquifers and Trapping Mechanisms

Deep saline aquifers are subsurface layers of permeable rock that are saturated with

water [7, 39]. They are located in sedimentary basins throughout the United States

(Fig. 1-1) and are typically one to four kilometers deep. They are bounded above by

a layer of low-permeability rock called a caprock, and may also be bounded below by

low-permeability rock.

When CO 2 is injected into a deep saline aquifer, a number of physical-chemical

mechanisms cause it to remain trapped for long times [39]. In a mechanism called

structural trapping, the upward migration of buoyant CO 2 is suppressed by the low-

permeability caprock [7]. In another mechanism called capillary trapping, CO 2 breaks

up into small ganglia that are immobilized by capillary forces [48, 43]. In solution

trapping, CO 2 dissolves in the formation brine [70]. Lastly, in mineral trapping,

dissolved CO 2 reacts with reservoir rocks and ions in the brine to precipitate carbonate

minerals [25].



0 500 MILES

0 500 KILOMETERS

Sedimentary basins

Figure 1-1: Map of sedimentary basins in the United States. Modified from [22].



1.2 Previous Work

Storage Capacity. Previous efforts to calculate storage capacity suffer from ma-

jor shortcomings of accuracy, complexity, or scale [6, 12]. Numerical simulations can

calculate capacity from structural, mineral, and solubility trapping with reasonable

accuracy, but these simulations are complex, require detailed geological information

about an aquifer, and are currently limited to local scales. Currently, the only method

to calculate capacity at regional and basin scales involves the use of efficiency fac-

tors [6]. These are multiplicative factors that relate the total pore volume of a reser-

voir to the pore volume that will be occupied by trapped CO 2. While in practice the

pore volume occupied by CO 2 is strongly affected by multiphase flow dynamics, these

coefficients currently do not rigorously account for dynamic phenomena like gravity

override. As a result, current estimates of storage capacity are highly variable and

often contradictory [12].

Injection Rate. There are currently no methods to easily evaluate maximum in-

jection rates of CO 2 at the basin scale. While determining safe injection rates is a

common problem in the subsurface disposal of industrial waste and the injection of

oilfield brine [39], methods for these applications are either too complex or too costly.

One method involves simulations that couple flow and geomechanics [72]. While this

method is attractive, its applicability is limited because it is too complex: building

a geomechanical model requires detailed information about a reservoir, and applying

it to an entire basin or a suite of basins would be impractical. Another method in-

volves on-site tests called leak-off tests (LOT) in which the maximum injection rate

is determined by injecting fluid into a reservoir until fracturing just begins [95]. This

method is insufficient because it is very expensive: drilling a well at depths relevant

to sequestration costs between four and eight million dollars [54]. Moreover, LOT

only provide very local information and multiple wells would likely be required to

characterize a basin that extends over thousands of square kilometers.



1.3 Scope of Thesis

In this work, we evaluate the storage capacity and maximum injection rate of five deep

saline aquifers located throughout the conterminous United States. We overcome the

shortcomings of current methods to calculate storage capacity and injection rate by

developing models that are simple, dynamic, and applicable at the basin scale. Our

storage capacity model is simple in that it is one-dimensional and dynamic in that

it accounts for multiphase flow phenomena like gravity override. Our injection rate

model is also one-dimensional and is dynamic in that it calculates the maximum

injection rate based on how pressure increases in an aquifer over time due to CO 2

injection.

This thesis is organized into five chapters. In Chapter 2, we derive the storage

capacity and injection rate models. In Chapter 3, we apply the models. This chapter

is divided into five sections in which we present relevant hydrogeologic data for each

aquifer we study and explain how we apply the models in detail. In Chapter 4, we

present the storage capacity and injection rate results from each aquifer. Lastly, in

Chapter 5, we discuss these results in the context of projected CO 2 emissions from

the United States.
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Chapter 2

Mathematical Models

2.1 Storage Capacity Model

2.1.1 Geologic Setting and Conceptual Model

Our storage capacity model is based on a previous model that captures the migration

of CO 2 due to natural ground water flow in an aquifer []. Our model extends this

model by also accounting for migration due to a sloped caprock.

To explain our model, we first describe the geologic setting for which the model

is developed. This geologic setting is shown in Fig. 2-1, and has three key features.

The first key feature is scale: our model applies to CO 2 sequestration at the basin

scale, which typically involves lengths of tens to hundreds of kilometers. The second

key feature is the presence of natural groundwater flow: in our model, CO 2 is injected

into a deep reservoir (blue) and, after injection, migrates in a direction determined by

the groundwater flow. While migration due to groundwater flow has been modeled

previously [42, 80], we also model migration due to the slope of the caprock. The

third key feature is the pattern of injection well arrays (red): we model injection

from a line-drive pattern of wells for which flow does not vary greatly in the direction

parallel to the line drive (north to south). This allows us to study the flow using a

one-dimensional model.

To develop our model, we divide the study of CO 2 migration into two periods,



Figure 2-1: Schematic of the basin-scale model of CO 2 injection. The CO 2 is injected

in a deep formation (blue) that has a sloped caprock (dark brown) and a natural

groundwater flow (west to east in the diagram). The injection wells (red) are placed

forming a linear pattern in the deepest section of the aquifer. Under these conditions,

the north-south component of the flow is negligible, and is not accounted for in the

one-dimensional flow model developed here. Reproduced from [42].



CO2 injection

groundwater flow

Strapped gas=
(Sg = Sg)

Figure 2-2: Conceptual representation of the two different periods of CO 2 migration:

(a) injection period; (b) post-injection period (see text for a detailed explanation).
Reproduced from [42]

shown in Fig. 2-2:

1. Injection period. Carbon dioxide (white) is injected at a high flow rate, displac-

ing the brine (deep blue) to its irreducible saturation. Due to buoyancy, the

injected CO 2 forms a gravity tongue.

2. Post-injection period. Once injection stops, the CO 2 plume continues to migrate

due to buoyancy and the background hydraulic gradient. At the trailing edge

of the plume, CO 2 is trapped in residual form (light blue) [43]. At the lead-

ing edge of the plume, migration continues laterally and the plume thickness

progressively decreases until all the CO 2 is trapped.

We model these two periods using a sharp-interface mathematical model. Sharp-

interface models of gravity currents in porous media have been studied for a long time

(see, e.g., [8, 38, 45, 55, 64, 29, 28]). Our model, however, is distinctive in that:

1. We model the injection period. The shape of the plume at the end of injection

leads to exacerbated gravity override, which affects the subsequent migration of

the plume in a fundamental way.

2. We include the effects of regional groundwater flow and caprock slope, which are

essential in the evolution of the plume after injection stops.

(a)



2.1.2 Governing Equations

Before developing the governing equations, we state our assumptions and approxima-

tions. These will be explained in detail throughout the text.

1. We use the sharp-interface approximation. In this approximation [38], the

medium is assumed to either be filled with water (water saturation Sw = 1),

or filled with CO 2 (gas1 saturation Sg = 1 - Swc, where Swc is the irreducible

connate water saturation).

2. We use the vertical flow equilibrium approximation [91, which assumes that the

dimension of the aquifer is much larger horizontally than vertically.

3. We assume that during injection, buoyancy has a negligible effect on the plume

migration. As a result, we neglect transport due to up-slope migration and

buoyancy-driven flow during injection.

4. We assume that the aquifer is homogeneous and isotropic.

5. We assume that dissolution into brine and leakage through the caprock are

negligible.

6. We assume that fluid densities and viscosities are constant (Figs. 3-13 and 3-14.

Indeed, compressibility and thermal expansion effects counteract each other,

leading to a fairly constant supercritical CO 2 density over a significant range of

depths [5].

Injection Period. Consider the encroachment of injected CO 2 into an aquifer, as

shown in Fig. 2-2(a). Let p be the density of C0 2, which is lower than that of the

brine, p+ Ap. Let hg be the thickness of the (mobile) CO 2 plume, and H be the total

thickness of the aquifer.

The horizontal volumetric flux of each fluid is calculated by the multiphase flow

extension of Darcy's law, which involves the relative permeability to water, krw, and

1We will sometimes refer to the CO 2 phase as "gas", even though it is normally present as a
supercritical fluid.



gas, krg [9]. In the mobile plume region, krw = 0 and krg = k* < 1. In the region

outside the plume, kw = 1 and krg = 0. Assuming that the volumetric flux of injected

C0 2, Q, is much larger than the vertically-integrated natural groundwater flow rate,

the governing equation for the plume thickness during injection reads:

Othg + O 2( l - f + n sin 0(1 - f)hg - n cos 0(1 - f)hgxhg= 0, (2.1)

where 4 is the aquifer porosity, 0 is the caprock slope, and f is the fractional flow

function, given by:

f = (2.2)
hg + M(H - hg)

The mobility ratio M is a key parameter in the equation. It is given by:

M= g  (2.3)

where pg and pw are the dynamic viscosities of CO 2 and water, respectively. The

coefficient n in Eq. 2.1 is given by:

Apgkk*S= pk g (2.4)
P90(1 - Swc)

where k is the permeability, and g is the gravitational acceleration. Notice that in

Eq. 2.1, the dimensions of Q are L2T-1 since the model collapses the third dimension

of the problem.

Post-injection Period. During the post-injection period, carbon dioxide is present

as a mobile plume (with saturation Sg = 1 - Sw,) and as a trapped phase (with

residual gas saturation Sg = Sgr). The governing equation for the plume thickness

during the post-injection period is [42]:

ROthg +d, Swf +± sin0(1 - f)hg - cos0(1 - f)hgxhg = 0, (2.5)
UH(1 - Swf)



where U is the groundwater Darcy velocity and R is the accumulation coefficient:

if Othg > 0 (drainage),

if Othg < 0 (imbibition).
(2.6)

F is the trapping coefficient, which is defined as:

F= Sgr
1 - Swc

(2.7)

This equation is almost identical to Eq. 2.1, but has two notable differences: (1) the

coefficient in the accumulation term is discontinuous; and (2) the advection term

scales with the integrated groundwater flux, UH, and not with the injected CO 2 flow

rate, Q.

2.1.3 Dimensionless Form of the Equations

To make the equations non-dimensional, we define the following dimensionless vari-

ables:
hg

H'

t

T
(2.8)

where T is the injection time and L is the characteristic injection distance, defined

to be:
QTL =

2HO(1 - Swc)

With these variables, the governing equation during injection becomes:

Oh + (f + Ns(1 - f)h - Ng(1 - f)haEh) = 0,

where we define the slope number Ns and the gravity number Ng to be:

2nrHO(1 - Swc) sin 0 2ApgkAgH sin 0NV- -

(2.9)

(2.10)

(2.11)

1-R = 1
1 r



Ng = 4 H$ 2(1 - Swc)2 cos- 4ApgkAgH (1 - Sw,) cos 0 (2.12)
Q2T Q2T

Equation 2.10 is a nonlinear advection-diffusion equation, where the second-order

term comes from buoyancy forces, not physical diffusion. As mentioned previously,

we neglect the effect of buoyancy during injection and set Ns and Ng to zero. The

governing equation then becomes:

Dh + 8of = 0. (2.13)

During the post-injection period, the governing equation is:

Rah + a, (Nff + Ns(1 - f)h - Ng(1 - f)habh) = 0, (2.14)

where Nf is the flow number, defined to be:

2UH
Nf = (2.15)

Q

2.1.4 Solutions to the Model

The model for the injection period is a hyperbolic partial differential equation (PDE)

and has an analytic solution. Written in the primitive form, it is:

ah + f'aOh = 0. (2.16)

This form shows that each height h advects at a constant velocity:

M
f' = (2.17)

(h + M(1- h)) 2 (

The position of each height at the end of injection is then given by:

M
(h) (h + M(1 - h)) 2 (2.18)



According to our scaling (Eq. 2.8), T = 1 at the end of injection. Since the plume is

assumed to be symmetric about the well array at ( = 0, the position of each height

at the end of injection is given by:

((h) = (h+M(l-h))2 left f the array, (2.19)

(h+M(lh))2 right of the array.

We solve the model for the post-injection period using standard numerical meth-

ods. While the solution to the post-injection period has been solved analytically in

previous work [42, 80], our extension of the model to include aquifer slope makes the

solution more difficult. For our numerical method, we discretize in space using the

finite volume method and we discretize in time using the forward Euler method [18].

The initial condition is the analytic solution to the injection-period model (Eq. 2.19).

When running a simulation with the discretized model, the CO 2 plume will mi-

grate until the plume length and thickness are zero. In practice, however, the plume

will become trapped at a finite length and thickness. This will occur when capillary

forces, which cause trapping, become similar in magnitude to viscous and buoyancy

forces, which cause migration due to ground water flow and caprock slope, respec-

tively. To determine when the plume becomes trapped during a simulation, we could,

in principle, compare these forces using the Bond number and the capillary num-

ber [37]. However, we do not pursue this approach. This is because the dimensions

of the trapped plume calculated using this method are unrealistically large com-

pared to experimentally determined dimensions of trapped globules of nonaqueous

phase liquids (NAPLs), which should behave similarly to trapped globules of super-

critical CO 2 [58]. Even though the NAPL experiments are performed at capillary

numbers and Bond numbers that are often not applicable to sequestration, the large

discrepancy makes the method suspect. Unfortunately, there are no experiments at

conditions relevant to sequestration with which to resolve the discrepancy. As an al-

ternative, we consider the plume to be trapped when its height is 0.1% of the reservoir

thickness. Since most reservoirs we study have thicknesses on the order of hundreds



of meters, we are assuming that the thickness of the trapped plume is on the order

of ten centimeters to one meter.

Accuracy. We evaluate the accuracy of our numerical solution by comparing it to

the analytical solution for the case in which transport occurs only due to groundwater

flow (only Nf # 0 in Eq. 2.14). Specifically, we compare a number called the efficiency

factor: the ratio of the volume of trapped CO 2 to the volume of infiltrated pore space,

where the definition of infiltrated pore space is shown in Fig. 2-3.

As mentioned earlier, the analytic solution to the model based only on ground

water flow has been found previously [80, 41]. The solution during the injection

period is the same as we have derived in Eq. 2.19. From this equation, the maximum

distance of the plume from the well array is at the end of injection is:

1
=inj - M (2.20)

This quantity characterizes the injection footprint; it is illustrated in Fig. 2-3. The

maximum distance of the plume from the well array at the end of the post-injection

period is [80, 41]:

max (2 - F)(1 - M(1 - F)) (2.21)
ME2

This quantity characterizes the trapped footprint; it is also illustrated in Fig. 2-3.

The sum of inj and max is total:

ta - (2 - F)(1 - M(1 - F)) + F 2(2.22)
total = 2  (2.22)

The dimensional counterpart to total is Ltotal, the total dimensional extent of the

plume. By substituting total and Ltotal into our scaling equation (Eq. 2.8), we obtain

an expression for the trapped volume of CO 2:

V = + (2M(1 - Swc)bHLtota, (2.23)
2where V is the volume)(1 - M + M)trapped per unit width of the injection well array. The

where V is the volume of trapped CO 2 per unit width of the injection well array. The
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Figure 2-3: Definition of tota, used to calculate the efficiency factor. The dark blue

region is the body of the aquifer filled with brine. The light blue region is the area

occupied by trapped CO 2.

part of the equation in brackets is the efficiency factor: it converts the volume of a

reservoir into the volume occupied by trapped CO2. Mathematically, it is equal to

2/ total. For our numerical simulations, the efficiency factor has the same expression,

but there is no analytical formula for total:

(2.24)E= tota
total

Comparing the efficiency factor from our simulations to the analytical efficiency

factor provides a way to measure the accuracy of the simulations. Figure 2-4 compares

the percent difference of the efficiency factors for M = 0.17 and r = 0.5. It shows that

the efficiency factor from the numerical solution becomes within 5% of the analytic

efficiency factor when the number of grid blocks per unit dimensionless width of

domain is over 500. To ensure the accuracy of our capacity estimates, we perform all

of our simulations using grids that are at least this fine. Since a typical domain in

our simulations is about 50 units long, we typically use about 25 000 grid blocks.
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Figure 2-4: Accuracy of the numerical solution as compared to the analytical solution.
The efficiency factor of the analytical solution is EAn; the efficiency factor of the
numerical solution is ENum. ENum becomes within 5% of EA for about 500 grid
blocks per unit dimensionless length of the domain.

Neglecting Diffusion. The large number of grid blocks required for high accuracy

causes our simulations to run very slowly. The bottleneck is the diffusion term. For a

simulation to be stable, the time step AT must decrease quadratically with the grid

size A( [79]:
A 2

AT = (2.25)
2D

We overcome this problem by neglecting the diffusion term. This is justified because

diffusion has a negligible effect on the calculated capacity. We show this in Fig. 2-5

by plotting the efficiency factor as a function of the ratio of Ng to Nf. The figure

demonstrates that the efficiency factor is insensitive to the diffusion term, falling by

about a tenth of a percent when Ng/Nf ranges from 0 to 100. When the ratio ranges

from 100 to 1000, the drop is only about one half of a percent.
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Figure 2-5: Effect of diffusion on the efficiency factor for M = 0.17 and F = 0.5. Note
that since the x-axis is logarithmic, the diffusion term has a negligible effect on the
efficiency factor even when Ng is three orders of magnitude larger than Nf.

2.1.5 Storage Capacity

For a given injection rate Q, solving Eq. 2.10 numerically yields the total extent of the

trapped plume Ltotal (Fig. 2-3). We determine the capacity of a reservoir by requiring

that this extent exactly equal the extent of the reservoir Ld. Conceptually, this

requirement means that the plume must fit in the reservoir. Under this requirement,

we solve for Q by guessing an initial value and then iterating until Ltotal equals Ld.

After determining Q in this way, we calculate storage capacity using the formula:

C = QWTpco 2, (2.26)

where W is the width of the injection well array.
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2.2 Injection Rate Model

In addition to the storage capacity model developed above, we develop a model for

the maximum rate at which CO 2 can be injected at the basin scale. The model is

based on how the pressure in a reservoir increases due to injection. The key constraint

of the model is the fracture overpressure: we define the maximum injection rate of

CO 2 as the rate at which a fracture in the reservoir is created or propagated. This

constraint is generally used to limit injection pressures during enhanced oil recovery

(EOR) and the subsurface disposal of industrial wastes [39, p.232].

While limiting injection rates based on fracturing is common, it is a conservative

constraint. It is conservative because fractures will not necessarily have a negative

impact on sequestration. For example, fractures could aid sequestration if they prop-

agate only into the body of the reservoir, creating high-permeability channels that

would increase CO 2 sweep efficiency. These types of fractures are routinely created

in EOR to raise production [83]. Fracturing, however, could also seriously undermine

the security or safety of sequestration [15]. For example, fractures may propagate into

the caprock and allow CO 2 to leak to the surface, or at least cause contamination

of overlying strata, which could be freshwater aquifers used for drinking water. An-

other possibility is that activating fractures and faults could induce seismicity [78, 95].

There are many examples from the oil and gas industry that subsurface fluid injec-

tion can cause seismicity of varying magnitudes [23]. In the Rongchang gas field in

China, for example, injections of wastewater at depths relevant to sequestration have

been correlated to more than 32 000 earthquakes [51]. In the Wilmington oil field in

California and at The Goose Creek oil field in Texas, induced seismicity has caused

railroad tracks to buckle or the surface to rupture [93]. While these severe cases may

be regarded as rare in the oil industry, there is unfortunately no understanding of

how basin-scale injection of CO 2 could trigger seismicity, or what the magnitude of

that seismicity would be.
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Figure 2-7: Model of the injection rate of CO 2 as a function of time. As carbon
capture and storage technology is deployed, the injection rate ramps up during a
period T (e.g., 50 years). After that period, the next generation of energy systems is
expected to come on-line. As a result, carbon capture and storage (CCS) is gradually
phased-out while new technologies are deployed, and the injection rate ramps down
during a time-period of the same magnitude T.

2.2.1 Geologic Setting and Injection Scenario

We develop the injection rate model in reference to a particular geologic setting and a

particular injection scenario. The geologic setting is the same as described in Fig. 2-1:

injection of CO 2 from a line-drive array of wells into a deep geologic reservoir at the

basin scale. The injection scenario consists of three stages, as shown in Fig. 2-7. In

the first stage, the injection rate is ramped up linearly as a function of time. This

ramping-up is based on the concept of sequestration wedges, which posits the need

to sequester CO 2 at progressively higher rates throughout the century due to the

projected rise of CO 2 emissions [69]. While the ramping-up time is arbitrary, we set

it to 25 years and 50 years so that we can evaluate injection rates in both a short-

term and long-term scenario. In the second stage, the injection rate is ramped down

linearly. This stage is based on the likelihood that sequestration projects will not

stop injecting immediately, but will rather inject progressively less CO 2 with time as

the reservoir nears capacity or as increased use of alternative energy sources reduces

emissions. In the third stage, the injection rate is zero and the sequestration project

is complete.



2.2.2 Governing Equations

Before developing the model, we explain our assumptions and approximations. These

assumptions and approximations will be discussed in more detail throughout the text.

1. We assume that the pressure in the reservoir is initially uniform.

2. We assume that permeability, bulk compressibility, and viscosity are constant

and homogeneous.

3. We approximate the pressure response of the reservoir to CO 2 injection as the

pressure response due to brine injection alone. This is justified since the sweep

efficiency of the CO 2 in the reservoir is low, typically on the order of about 5%

of the reservoir volume.

4. We assume the following time-dependent behavior for the injection rate: it will

increase linearly in time, then decrease linearly, and then remain at zero (see

Fig. 2-7).

As mentioned above, we model the pressure response of a reservoir to CO 2 injection

as the pressure response due to brine injection alone. This approximation is not

novel [63]. Conceptually, it is based on the observation that the sweep and storage

efficiency of CO 2 is low, typically on the order of about 5% (Fig. 2-3). It is also

based on the assumption of negligible capillary pressure and the assumption that a

single, constant bulk compressibility can be used to characterize the system. The

latter assumption is somewhat dubious and will be discussed later in grater detail.

We develop our mathematical model in three steps. In the first step, we develop

the model for a semi-infinite aquifer during the first stage of injection. In the second

step, we use superposition in time to obtain solutions for the later stages of injection.

In the third step, we obtain the solution for an infinite aquifer, and use superposition

in space to obtain solutions for arbitrary boundary conditions.



The evolution of pressure in a semi-infinite, one-dimensional aquifer is governed

by the diffusion equation [9]:

cCtp - k xxp = 0,
P

0 < x < 00oo,

where c is the bulk compressibility of the fluid-solid system, k is the intrinsic per-

meability, and pt is the brine viscosity. Let CO 2 be injected at x = 0 at a rate of

Q(t) = Qmaxt/T [L3T-1], where T is the initial injection period (see Fig. 2-7). The

boundary condition at the well array is:

OxPXI =

Qmaxt

HWT'
t > 0,

where H is the net aquifer thickness and W is the width of the well array.

(2.28)

The

boundary condition at infinity is:

px--O( - 0 -- 0, t > 0, (2.29)

We assume that the pore pressure is initially uniform, so the initial condition is:

p(x,t = 0) = Po, 0 < x < 00.

2.2.3 Dimensionless Form of the Equations

To make the problem non-dimensional, we define the dimensionless variables:

t x p - po
7T= - =, JJT' L P

where

L = kT 1/2

t > 0, (2.27)

(2.30)

(2.31)

(2.32)

OXPIX-00



is a characteristic injection distance, and

P T QmaxP = F HW
krc HW'

(2.33)

is a characteristic pressure drop. With these variables, the non-dimensional form of

the problem reads:

,p - o9p = 0,

- 8o l4=o = ,

p(,'7 = 0) = 0,

0 < ( < 00,

p k -* 0,

0 < ( < O0.

2.2.4 Analytical Solution

We find the analytical solution to Eqs. 2.34-2.36 by the method of Laplace transforms.

Let U( , s) be the Laplace transform of the dimensionless pressure jp( , T). For each (,

the solution must satisfy:

sU - p(, 0) -% U = 0, (2.37)

at (U =o Cj -IO -*0. (2.38)

The solution to this problem, in Laplace space, is:

(2.39)

The solution in physical space is given by the inverse Laplace transform of Eq. 2.39:

21

+ 
2

6T]
p(, i) = 4/3 exp ( - (- 1 erfc (

(2V/
(2.40)

We plot this basic solution in Fig. 2-8 for different values of the dimensionless time 7.

T > 0,

7 > 0,

(2.34)

(2.35)

(2.36)

exp (_ Vss-
U(S2, S
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Figure 2-8: Plot of the basic dimensionless pressure solution p((, T) in a semi-infinite
aquifer with a linearly increasing injection rate. The solution is plotted at different
dimensionless times 7 = 0.2, 0.5, 1.

The maximum pressure occurs, of course, at the well array (( = 0):

(2.41)
47T3/2

(( = 0, 7) = .
3~r

Solution at Later Times, and Maximum Injection Pressure. To obtain the

dimensionless pressure solution p((, 7) for later stages of injection (Fig. 2-7), we use

the principle of superposition in time. The dimensionless pressure for each of the

injection periods reads:

j5((, 7) if 0 < 7

( , 7) = T((, 7) - 2p((, 7 - 1) if 1 < 7

(r, 7) - 2p((, 7 - 1) + p((, T - 2) if 7 > 2.

< 1,

< 2, (2.42)

In Fig. 2-9, we plot this solution at the well array ( = 0), where the maximum

pressure occurs. Interestingly, the maximum pressure occurs at the dimensionless
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Figure 2-9: Plot of the dimensionless pressure solution j3 at the origin, E = 0.

time T = 4/3, after the peak in the injection flow rate. Its value is:

1mx = 0.87. (2.43)

Infinite Aquifer and Bounded Aquifer Models. While the fundamental solu-

tion in Eq. 2.40 is derived for a semi-infinite aquifer, it can be used to obtain the

solution for an infinite aquifer. This is done by simply re-defining the injection rate

in Eq. 2.33 as follows:

Qmax - Qmax/2

With the solution for an infinite aquifer, we can now use the method of images [9]

to find solutions for aquifers with a variety of boundary conditions. We consider two

cases below.

Semi-infinite Aquifer with No-flow, and with Constant-Pressure Boundary. Con-

sider a semi-infinite aquifer in which the distance from the well array to the boundary

is Lb. As shown in Fig. 2-8, the evolution of pressure will be affected when this dis-

tance is smaller than about twice the characteristic length L, defined in Eq. 2.32.

To model this effect, we use the method of images and locate an image well at the

same distance Lb from the boundary on the opposite side of the boundary. We use a
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Figure 2-10: Method-of-images solution to the case of a semi-infinite aquifer with a

no-flow boundary condition. The thin solid black line is the fundamental solution

for an infinite-aquifer. The thin dotted line is the same solution for an image well

array, with the same injection rate Q(t). The superposition of both functions (thick

solid blue line) is the desired solution. It satisfies the boundary condition of no-flow

(zero-slope) at the origin.

positive-strength image well to model a no-flow boundary, as shown in Fig. 2-10. We

use a negative-strength image well to model a constant-pressure boundary, as shown

in Fig. 2-11.

In the case of a no-flow boundary, the dimensionless pressure at the well array is:

P(0, 7) + P(2b, 7) if 0 < 7 < 1,

p(0, 7) - 2P(0, T - 1) + [p(2b, ) - 25(2b, T - 1)] if 1 < T < 2,

p(0, T) - 2P(0, T - 1) + p(0, T - 2)

+[fi(2(b, T) - 2p(2b, 7 - 1) + p(2b, 7 - 2)]
(2.44)

where (b = Lb/L, the dimensionless distance to the well array. In the case of a

constant-pressure boundary, the dimensionless pressure at the well array is:

p(0, T) - p(2b, T) if 0 < T < 1,

p(0, T) - 5(0, 7) - 2p(0, 7 - 1) - [f(2(b, 7) - 2p(2b, 7 - 1)] if 1 < 7 < 2,

p1(0, T) - 2p(0, T - 1) + p(0, T - 2) if 7 > 2.

-[f(2b, 7) - 2P5(2b, 7 - 1) + 5(2b, 7 - 2)]

(2.45)

(0,) =
if T > 2.

' ' ' 'T I!~~~.... ~L r"
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Figure 2-11: Method-of-images solution to the case of a semi-infinite aquifer with a
constant-pressure boundary condition. The thin solid black line is the fundamental
solution for an infinite-aquifer. The thin dotted line is the same solution for an
image well array, with a negative injection rate (i.e. production rate) of the same
magnitude, -Q(t). The superposition of both functions (thick solid blue line) is the
desired solution. It satisfies the boundary condition of constant pressure at the origin.

For both of these cases, we determine the maximum dimensionless pressure Pmax

and the time at which it occurs Tmax as a function of b. Our results are shown in

Fig. 2-12. The figure shows that, for a no-flow boundary, the pressure at the well array

is higher than observed in the infinite-infinite boundary case (dotted line) when the

boundary is close to the well array. However, the pressure approaches the pressure for

the infinite-infinite boundary case as the location of the boundary exceeds one unit of

dimensionless length away from the array. For the constant-pressure boundary case,

the pressure at the well array is lower than that observed for an infinite-infinite bound-

ary case when the boundary is close to the array. Similarly to the no-flow boundary,

however, the pressure approaches the pressure for the infinite-infinite boundary case

as the location of the boundary exceeds one unit of dimensionless length away from

the array.

2.2.5 Maximum Injection Rate

The maximum injection rate of CO 2 Qma that corresponds to a particular value of

P can be calculated by rearranging our definition of the characteristic pressure drop
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Figure 2-12: The maximum dimensionless pressure Pmax and the time at which it
occurs T max for semi-infinite aquifers having a no-flow or constant-pressure boundary.
The dimensionless distance to the boundary is (b. Note that as this distance becomes
large, the solutions converge to the solutions for the infinite aquifer case, shown with
the horizontal dotted line (see Eq. 2.43).



(Eq. 2.33):

Qmax = 2HW kc p (2.46)
Q 1iT j

We obtain an expression for the maximum mass injection rate in two steps. First,

we multiply by Pco 2. Secondly, we equate the pressure difference p - po to the

fracture overpressure of the reservoir Pfrac. In this way, we obtain an expression for

the maximum rate at which C0 2 can be injected without activating a fault in the

reservoir:

Qmax = 2pco2HW frac(2.47)

2.2.6 Fracture Overpressure

The fracture overpressure Pfrac is difficult to calculate rigorously. One source of dif-

ficulty is uncertainty about the failure mechanism: overpressurizing a reservoir may

cause new fractures, or may cause displacement along pre-existing fractures. If the

mechanism is slip along a pre-existing fractures, the problem is that data about the

location and orientation of the fractures-in addition to data about whether they

are well-cemented-is often absent. If the mechanism is the formation of new frac-

tures, the problem is uncertainty about the fracture mode and the strength of the

rock. Fractures, for example, could be tensile fractures (Mode I fractures), in which

displacement is normal to the fracture plane, or shear fractures (Mode II or III frac-

tures), in which displacement occurs parallel to the fracture plane (Fig. 2-13). Due to

this uncertainty, we make the assumption that the failure mechanism is the creation

of a tensile fracture.

This assumption is motivated by the difficulty in determining the state of stress at

depth in a reservoir. Since a tensile fracture occurs when the minimum principle stress

is exceeded, only one value of the stress tensor is required for our calculations. For

shear fractures, however, the minimum principle stress and the maximum principle

stress would be required, as demonstrated below.

We now explain how to determine the overpressure at which a tensile fracture

occurs. The explanation relies on the concepts of effective stress and Mohr's circle [40].
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Figure 2-13: The three fracture modes. We assume that the overpressure from injec-

tion causes only Mode I fractures.

As illustrated in Fig. 2-14, effective stress is the difference between the total stress in

a reservoir and the pore pressure:

a' = a - ap, (2.48)

where a is the total stress, a is the Biot poroelastic coefficient, and p is the pore

pressure [11, 87]. We take a to be 1. Effective stress-not the total stress-controls

the geomechanical response of a reservoir to increasing pressure from injection [95].

As shown in Fig. 2-15, Mohr's circle plots all possible combinations of normal stress

a and shear stress s at a point. The angle 0 identifies the plane on which a par-

ticular combination occurs. In the figure, we have also plotted the Mohr-Coulomb

failure envelope, and we have chosen the horizontal axis to be the effective normal

stress. Since effective stress is the difference between total stress and pore pressure,

an increase in pore pressure due to injection will cause the Mohr's circle initially at

position a to move left. Failure occurs when Mohr's circle either intercepts the failure

envelope or the origin (b in the figure). If it first intercepts the failure envelope, shear

fracturing occurs; if it first intercepts the origin, tensile fracturing occurs. The change

in effective stress from the original position of the circle (position a) to the position

at failure (position b) is the fracture overpressure. For shear failure, the fracture

overpressure depends on the maximum effective principal stress a' and the minimum

effective principal stress a', since their relative magnitudes determines the diameter

of Mohr's circle, which influences how far the circle must be translated before inter-

Mode III
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Figure 2-14: Graph of the total stress and hydrostatic pressure as a function of depth,
showing that the effective stress is the difference between them.

cepting the failure envelope. For our assumption of tensile failure, however, only the

minimum principal effective stress is required. While the tensile strength of the rock

would also be required for a rigorous calculation, we neglect it since tensile strengths

are typically near zero [95, p.121].

To calculate the least principal effective stress in a reservoir, we must calculate

the initial pore pressure and the least principal total stress (Eq. 2.48). We calculate

the pore pressure by assuming that pressure is hydrostatic. We calculate the least

principal total stress in one of two ways, depending on the prevailing state of stress

in a basin. This may be predicted based on the location of the basin. Fig. 2-16 shows

the state of stress in different provinces of the United States [96].

When the least principal total stress is the vertical stress, we calculate it to be

the weight of the overburden:

Pv = Pbz, (2.49)

where z is depth and Pb is the bulk density of the overburden, which accounts for

both rock and fluid. Assuming that the overburden consists principally of silica-based

rock (p - 2650 kg/m 3 ) with a porosity of 0.2 filled with brine, Pb 2300 kg/m 3 .
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Figure 2-15: Mohr's circle with effective stress plotted on the horizontal axis. The
Mohr-Coulomb failure envelope is plotted for an uncemented fault (blue). The pic-
ture shows that as pore pressure rises due to injection, Mohr's circle moves to the

left. Failure occurs when the stress coordinates of the fracture intersect the failure

envelope. The change in effective stress required for this to occur is the fracture

overpressure Pf.

The formula for the effective vertical stress is then:

4, = (Pb - Pw)Z, (2.50)

where Pw is the density of brine.

When the least principal total stress is horizontal, we calculate it by assuming that

a basin behaves elastically and that the state of stress is only due to gravitational

loading from the overburden. This is known as the bilateral constraint, and is a

common assumption used to calculate horizontal stress [95, p.281]. The equation is:

fu = v, (2.51)
1- vu

in which vu is the undrained Poisson ratio. We use a value of 0.3 for Vu, which is

characteristic of many sedimentary rocks as shown in Table 2.1.

The horizontal stress calculated using Eq. 2.51 has rarely been observed in sedi-

mentary basins, even when tectonic forces are negligible [59, 95]. Rather, horizontal

stresses tend to be much higher. As a result, equating this stress to the fracture
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Table 2.1: Undrained Poisson ratio for various sandstones
from [87, Table C1].

and limestones. Modified

Rock Undrained Poisson ratio v,

Berea sandstone 0.33
Boise sandstone 0.31
Ohio sandstone 0.28
Pecos sandstone 0.31
Ruhr sandstone 0.31
Weber sandstone 0.29
Indiana limestone 0.33

pressure will probably underestimate the fracture pressure, leading us to also un-

derestimate the maximum rate at which CO 2 can be injected before reaching this

pressure.
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Chapter 3

Application to Individual Geologic

Reservoirs

We apply the storage capacity and injection rate models to five reservoirs located

throughout the conterminous United States. To select the reservoirs, we first compile

a geologic map of the United States [44]. This map shows the major faults in the

country and major sedimentary basins [22]. It also shows where sedimentary rocks are

greater than 800 m thick [21]. This feature is important for locating suitable reservoirs

because thickness suggests depth, and CO 2 must be injected at depths greater than

800 m to be stored efficiently in a high-density supercritical state. Using this map as

a guide, we choose the following reservoirs on the basis of size and continuity for our

study: the lower Potomac aquifer, the Mt. Simon Sandstone, the Paluxy Sandstone,

the Frio Formation, and the Madison Limestone. Other selection criteria includes

depth and availability of data. We select these reservoirs to be representative, not

exhaustive.

We apply our models to these reservoirs in three steps. First, we characterize

the geology and hydrogeology of the reservoir. Next, we apply the storage capacity

model. Lastly, we apply the injection rate model. We demonstrate our procedure

step-by-step on the lower Potomac aquifer.
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Figure 3-1: Map of the North Atlantic Coastal Plain aquifer system with section lines.

Modified from [82, Fig.18].

3.1 lower Potomac aquifer

3.1.1 Geology and Hydrogeology

Applying our models to a reservoir requires understanding the geology and hydroge-

ology of the reservoir. We begin modeling the lower Potomac aquifer by describing

relevant geologic and hydrologic characteristics. The lower Potomac aquifer underlies

almost the entire North Atlantic Coastal Plain, stretching from New Jersey through

Virginia (Fig. 3-1). In different places it consists of different groups and formations

that are stratigraphically equivalent: it includes parts of the Potomac Formation in

Virginia and Delaware; it is nearly equivalent to the Patuxent Formation in Maryland;

and it includes parts of the Potomac Group and Raritan and Magothy Formations

in New Jersey [81, p.G30]. Its western limit is the Fall Line, where Coastal Plain

sediments pinch out against crystalline rock in the Piedmont, as shown in Fig. 3-2a.

From the Fall Line, it dips and thickens seaward. Along the coast, its top and bottom

boundaries are irregular as shown in Fig. 3-2b.

The lower Potomac aquifer is Lower Cretaceous in age. It consists mostly of
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Figure 3-3: Flow direction in the lower Potomac aquifer. Based on [82, Fig.60].

sediments deposited in fluvial or deltaic environments. In Maryland and Delaware,

which are the focus of our study, it consists of lenses of sand and gravel that contain

interstitial clay. These lenses constitute between 20 and 60% of the aquifer thickness,

and are interbedded with clayey and silty layers [81, p.G30]. The aquifer is bounded

above by a confining unit composed mostly of clay and sandy clay beds, and is

bounded below by crystalline bedrock (Fig. 3-2) [81, 82].

The transmissivity of the Potomac aquifer ranges from 100 to 2000 m2/day [82,

Fig.54]. However, most of the area we use for sequestration, defined in detail be-

low, has transmissivities in the upper range between 1000 and 2000 m2/day. The

regional flow direction is generally seaward as shown in Fig. 3-3, but freshwater wells

in the aquifer divert the flow to the north in Delaware and to the south in the Chesa-

peake Bay [82, Fig.58]. The fluid residence time has been estimated to be more than

18,000 years [36, p.119]



Table 3.1: List of input parameters for the storage
set.

Input Parameter

Connate water saturation
Residual CO 2 saturation
Endpoint relative permeability to CO 2

Intrinsic permeability
Width of injection well array
Length of the model domain
Porosity
Net Reservoir thickness
Darcy velocity
Cap rock slope
Viscosity of H2 0
Viscosity of CO 2

Density of CO 2

Symbol

Swc
Srg

k*
k

W
Ld

H
U
0
Ipw

Pg
Pg

capacity model and how they are

Methodology

Fixed from experiments
Fixed from experiments
Fixed from experiments
Set from reservoir data
Set from reservoir data
Set from reservoir data
Set from reservoir data
Set from reservoir data

Calculated from reservoir data
Calculated from reservoir data
Calculated from reservoir data
Calculated from reservoir data
Calculated from reservoir data

3.1.2 How to Apply the Storage Capacity Model

Modeling requires using reservoir data and laboratory data to set values of the input

parameters in the equations of the model. It also requires handling uncertainty and

variability in the input parameters. Our methodology consists of three procedures

that we use depending on the type of input parameters (Table 3.1).

Saturation and Relative Permeability. One group of input parameters de-

scribes CO2-brine displacement characteristics. They are connate water saturation

(Swc), residual CO 2 saturation (Srg), and the endpoint relative permeability to CO 2

(krg). These parameters are unknown for most reservoirs, so we set them based on lab-

oratory experiments. Setting appropriate values, however, is difficult. The difficulty

arises because there are very few laboratory experiments that measure the parameters

at in-situ conditions relevant to sequestration. Tables 3.2 and 3.3 summarize some of

these experiments. Another difficulty is that the parameters are functions of variables

like porosity, temperature, pressure, and salinity which may vary widely at the basin

scale. They are also affected by the presence of hydrocarbons, which are present in

at least some parts of many of the basins we model. As a result, the parameters



Table 3.2: Summary of CO 2-brine relative permeability experiments involving both
drainage and imbibition [10].

Sample

Cardium 1
Cardium 2
Viking 1
Viking 2
Ellerslie
Basal Cambrian
Wabamun 1
Wabamun 2
Nisku 1
Nisku 2
Cooking Lake

Rock Type

Sandstone
Sandstone
Sandstone
Sandstone
Sandstone
Sandstone
Carbonate
Carbonate
Carbonate
Carbonate
Carbonate

Table 3.3: Summary of N2-water relative
drainage and imbibition [66].

permeability experiments involving both

Permeability Temp. Pres. .
(mD) (0 C) (MPa) Sw krg rg

Berea sandstone 8 210 - 160 21 5.5 0.62 0.73 0.37
Berea sandstone 13 210 - 160 21 5.5 0.47 0.57 0.32

themselves exhibit basin-scale variability. Instead of performing a rigorous analysis,

we handle the uncertainty and variability by ignoring the effects of hydrocarbons

and positing three scenarios that cover the range of laboratory findings for two-phase

water-gas systems. Since we are calculating CO 2 storage capacity, we specifically use

scenarios consistent with minimal CO 2 trapping, maximum trapping, and average

trapping. These scenarios and the values we use for the parameters are listed in Ta-

ble 3.4, along with the resulting trapping coefficients (Eq. 2.7). We use each of these

scenarios to calculate a minimum, maximum, and average storage capacity.

Table 3.4: Values of CO 2-brine displacement parameters used in our three trapping
scenarios.

Trapping Scenario

Less Trapping
Average Trapping
More Trapping

Swc

0.5
0.4
0.3

k*g

0.5
0.6
0.7

Srg

0.2
0.3
0.4

F

0.40
0.50
0.57

Temp.
(0C)
43
43
35
35
40
75
41
41
56
56
55

0.153
0.161
0.125
0.195
0.126
0.117
0.079
0.148
0.097
0.114
0.099

Pres.
(MPa)

20
20
8.6
8.6
10.9
27

11.9
11.9
17.4
17.4
15.4

Salinity
(ppm)

27100
27100
28300
28300
97200
248000
144300
144300
136800
136800
233400

SwC

0.20
0.43
0.56
0.42
0.66
0.29
0.60
0.57
0.33
0.49
0.48

Srg

0.10
0.25

0.30

0.22

krg

0.53
0.13
0.33
0.26
0.12
0.54
0.53
0.19
0.18
0.10
0.07



Reservoir Boundaries. While C0 2-brine displacement parameters are fixed based

on experiments, another group of parameters is set from directly from reservoir data.

We set these parameters by averaging over an appropriate region of the reservoir. This

requires first determining the usable area of the reservoir, which requires identifying

the boundaries of the reservoir.

In this study, we define five major types of boundaries, shown in Fig. 3-4. These

boundaries delineate the area where we place injection wells and store CO 2. The first

type of boundary is a data boundary. This boundary is not based on any physical

feature, but rather on the limits of data we found for this study. We draw it when

the quality or quantity of available data undermines reasonably accurate modeling of

storage capacity. The second type of boundary is a depth boundary. This boundary

traces where the top of the reservoir is 800m deep. Assuming a hydrostatic pressure

gradient and a geothermal gradient of 25oC/km, this is the depth at which C02

becomes a supercritical fluid. We define it as a boundary to ensure that CO 2 is

stored efficiently in a high-density state [5]. In the course of modeling, however, we

have found that placing this constraint on all the injected CO 2 is overly restrictive,

severely limiting the usable portion of many reservoirs we study. As a result, we use

the depth boundary to constrain only the plume of injected CO 2 and not the plume

of trapped CO 2 . This compromise is reasonable since most CO 2 is stored in the

vicinity of the injected plume as shown in Fig. 1-3. The third type of boundary is a

hydraulic boundary. It marks active pumping wells which laterally alter flow direction

and should not be contaminated

While data, depth, and hydraulic boundaries are simple, the remaining types of

boundaries are more complex because they can correspond to multiple features in

a reservoir. The fourth type of boundary, for example, is a rock boundary. This

boundary corresponds either to where the reservoir pinches out or changes to a com-

position not amenable to CO 2 storage. For example, we draw this type of boundary

when a sandstone reservoir changes composition to include a high percentage of low-

permeability rocks like shale or clay. The last type of boundary is a leak boundary.

This boundary corresponds to places or features where CO 2 will leak to the surface,
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or where there is a high risk of leaking. Specifically, we draw these boundaries at large

faults and reservoir outcrops, and also where the caprock pinches out or changes com-

position to a high-permeability rock. While CO 2 will clearly leak at an outcrop, we

identify the other features as leak boundaries for safety or modeling purposes. Faults,

for example, may be conduits or barriers for flow, but we identify most large faults as

leak boundaries to be safe since little data is often available to evaluate the leakage

risk. Similarly, a pinchout in a caprock does not necessarily mean CO 2 will leak to

the surface, as overlying low-permeability rocks will likely retard upward migration.

Since our model is one-dimensional, however, we cannot model this vertical migration

and therefore exclude places where it is likely to occur.

In addition to faults, outcrops, and caprock pinchouts, there is an additional fea-

ture that may cause CO 2 to leak. This is a salt diapir. A salt diapir may cause

leakage by piercing a reservoir and caprock. Despite this concern, we do not identify

salt diapirs as boundaries. This is for two reasons. First, maps of salt diapir locations

often do not indicate depth to the top of the diapir, making it difficult to ascertain

whether it pierces a reservoir and caprock or lies below them. Secondly, the number

of salt domes in a basin can be so high that restricting CO 2 storage based on their

location would nearly preclude our ability to model in the basin. For example, avoid-

ing salt diapirs in the northern Gulf Basin, shown in Fig. 3-5, would prevent us from

modeling large parts of the basin, including northern parts of the Frio Formation on

the coast of Texas.

Many of the boundaries we define are drawn at features that exist at a variety

of scales. For example, faults and changes in rock composition may occur at scales

ranging from the meter scale or less to the regional scale. Since this study calculates

storage capacity at the basin scale, we ignore features that occur at smaller scales

and focus on features that appear on basin-scale maps. While this choice may lead

to errors in our calculated capacity, we assume these errors are small. For example,

CO 2 may leak at small-scale faults, but the leakage rate is likely small compared to

the injection rate of CO 2 and the total storage capacity.

With reservoir boundaries defined, we now demonstrate how to identify them in
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Figure 3-5: Location of salt diapirs in the northern Gulf Basin. Basin map modified

from [22]. Salt diapir map modified from [1].

the lower Potomac aquifer. We start with the data boundary since it is the most

obvious. As with many reservoirs, data becomes unavailable for the lower Potomac

as it dips under the ocean. This is shown in the reservoir depth map in Fig. 3-6a.

Based on the extent of this map, we draw the data boundary shown in Fig. 3-6b. Since

parts of the reservoir are shallower than 800 m, we also draw an injection boundary.

Next we draw a hydraulic boundary based on the locations of fresh-water wells. The

locations of these wells are shown in Fig. 3-7a and all the boundaries are shown in

Fig. 3-7b. None of the other boundary types occur in this reservoir.

Model Domain. After identifying the reservoir boundaries, we determine the area

within the boundaries over which to apply our model. This is necessary because

transport processes within the reservoir boundaries may act in many directions, but

our model can only resolve one-dimensional transport. Specifically, our model applies

only when transport due to ground water flow and up-slope migration are colinear, or

when transport is dominated by only one of the processes. If the transport directions

are not co-linear, we compare Ns and Nf to determine the dominant process (Eqs. 2.11

and 2.15). We evaluate Ns and Nf using values of their parameters averaged over the

entire area within the reservoir boundaries. However, if the depth and isopotential
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contours are very complicated within some part of that area such that transport from

ground water flow or up-slope migration can not be approximated as one-dimensional,

we exclude that area from our averaging.

In the lower Potomac aquifer, transport from ground water flow and up-slope

migration are approximately co-linear near the center of the usable area, as shown in

Fig. 3-8a. We select this area as the model domain, as shown in Fig. 3-8b.

Width of the Well Array and Length of the Model Domain. The width of

the injection well array W and the length of the model domain Ld are set by the

dimensions of the model domain. The width of the injection well array is the size

of the domain perpendicular to the direction of transport. The length of the model

domain is the size of the domain parallel to the direction of transport.

Permeability. Permeability data is often available in the form of hydraulic con-

ductivity data or transmissivity data. When hydraulic conductivity data is available,

we transform it to permeability data with the formula:

k -= K, (3.1)
Pw9

where K is the hydraulic conductivity. When transmissivity data is available, we

transform it to permeability data with the formula:

k w k, (3.2)
Hpwg

where K is the transmissivity.

We set permeability in one of two ways depending on the extent of available

data. When data is available from only a few wells, we average the data. While

this procedure is the only option, we recognize that it neglects details about the

permeability field that may be crucial to CO 2 transport. We discuss the implications

of this later.

In some cases, data about the lateral variation of permeability is available. In



PN

0 50

0 50

(a) Depth contours and streamlines

PN

0 50

0 50

(b) Model domain

Figure 3-8: (a) Map of depth contours and streamlines in the lower Potomac aquifer.

The usable area greater than 800m deep is shown in green instead of with boundaries
for clarity. Based on [82, Fig.60] and [34, Map c1potomac]. (b) Model domain drawn

where transport due to ground water flow and up-slope migration are approximately
co-linear.

1000m

1400m

Usable Area

MILES

KILOMETERS

Model domain

MILES

KILOMETERS



Table 3.5: Calculation of permeability from transmissivity data for the lower Potomac

aquifer.

Effective
Transmissivity Length Hydraulic Permeability

(m2/day) Conductivity (km) Conductivity (m2)
(m/day) (m/day)

279 1.27 18 3.7 2.78 x 10-12

698 3.17 6
1395 6.33 53
1860 8.44 17
1395 6.33 82
698 3.17 26
279 1.27 13

these cases, we set permeability by calculating an effective permeability keff. The

formula for effective permeability when the variations are in the lateral direction only

is:

keff b , (3.3)

where bi is the thickness of layer i and ki is the permeability of layer i. This is the

harmonic average. Sometimes it is more convenient to first calculate an effective

hydraulic conductivity Keff and then convert this into an effective permeability.

For the lower Potomac aquifer, we calculate permeability from the transmissivity

map shown in Fig. 3-9. Our calculation involves three steps: we convert transmissivity

to hydraulic conductivity, calculate an effective hydraulic conductivity, and then con-

vert the effective hydraulic conductivity to permeability. To convert transmissivity to

hydraulic conductivity, we draw a cross section through the aquifer roughly normal to

the well array that shows both the average reservoir thickness and the transmissivity.

This cross section is shown in Fig. 3-10. For each layer of constant transmissivity, we

divide by the average reservoir thickness to calculate hydraulic conductivity. Then we

take the harmonic average of these conductivities to calculate an effective hydraulic

conductivity. Lastly, we convert this effective hydraulic conductivity to permeabil-

ity (Eq. 3.1). We show our calculations to convert transmissivity to permeability in

Table 3.5.
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Figure 3-9: Transmissivity in the lower Potomac aquifer. Based on [82, Fig.54].

Net Thickness and Porosity. We set porosity and net reservoir thickness by

averaging over the model domain. For the net reservoir thickness, we use the total

reservoir thickness for homogeneous reservoirs that consist almost entirely of one rock

type like carbonate or sandstone. Many reservoirs, however, are not homogeneous and

contain beds, lenses, or nodules of low-porosity rocks like shale or clay. In modeling

these reservoirs, we approximate the net thickness of the high-porosity rocks that we

target for CO 2 storage. This is because our model assumes that the entire thickness of

a reservoir stores CO2, but low-porosity rocks like shale and clay will store negligible

amounts relative to sandstone or carbonate.

For the lower Potomac aquifer, we obtain the net reservoir thickness by averaging

the net sandstone thickness is the model domain since the reservoir consists predomi-

nantly of sandstone. The net sandstone thickness is shown in Fig. 3-11 superimposed

on the model domain. We use an average value of 250m. While in general we would

do the same procedure to determine porosity, we found no porosity data for the lower

Potomac aquifer. In the absence of data, we set the porosity to a value of 0.20 which

characterizes sandstone, the most abundant rock in the aquifer.
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Figure 3-10: Cross section through the model domain in the lower Potomac aquifer

showing transmissivity. (a) Modified from [82, Fig.54].

Table 3.6: Ranges of porosity for rocks in which we model CO 2 storage.

from [20, Table 2.4].

Modified

Rock Porosity

Sandstone 0.05 - 0.30

Karst Limestone 0.05 - 0.50

Limestone and Dolomite 0.00 - 0.20

. .........

-- ,
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Figure 3-11: Model domain superimposed on a map of net sandstone thickness
in the lower Potomac aquifer. Sandstone thickness map modified from [34, Map
c4potomacg].

Cap Rock Slope and Darcy Velocity. We set the caprock slope by calculating

the slope between depth contours in the model domain and then averaging. For

the lower Potomac aquifer we obtain an average slope of about -0.5' [34, Map

clpotomac]. The negative sign indicates that up-slope migration occurs in the oppo-

site direction to ground water flow.

We set the Darcy velocity by calculating the Darcy velocity between isopotential

contours in the model domain and then averaging. For the lower Potomac aquifer we

obtain an average Darcy velocity of about 100 mm\yr.

Viscosity and Density. The remaining parameters in our model are the viscosity

of brine and the viscosity and density of CO 2. We calculate these parameters as func-

tions of temperature and pressure only. We calculate the temperature in a reservoir

Tres using the geothermal gradient GT:

Tres = To + GTZ, (3.4)



Trapping Scenario Storage Capacity (Gton)

Less Trapping 3.3
Average Trapping 5.3
More Trapping 7.3

Table 3.7: Storage capacity results for the lower Potomac aquifer

where z is depth and To is the average surface temperature. In our calculations, we

set z equal to the average depth to the caprock in the model domain. The geothermal

gradient often exhibits little variation at the basin scale, so we use regional values for

basins published in state-wide and nation-wide geothermal gradient maps [62, 47].

For the lower Potomac aquifer, the geothermal gradient is about 25oC/km, leading

to a temperature of about 39.8 0 C.

We calculate the pressure in a reservoir Pres using the geopressure gradient Gp as

shown in the following equation:

Pres = GpZ (3.5)

Since the geopressure gradient in a basin is often very close to the hydrostatic gradient,

we simplify calculations by always using the hydrostatic gradient Pw. In the lower

Potomac aquifer, this leads to a pressure of about 10.3 MPa.

After calculating temperature and pressure, we calculate viscosity and density.

To calculate the viscosity of brine, we use a correlation function [52]. To calculate

the viscosity and density of CO2, we use a thermophysical property calculator [14].

Using these tools, we calculate the viscosity of brine in the lower Potomac aquifer to

be about 0.7 mPa s. We calculate the viscosity of CO 2 to be about 0.05 mPa s and

the density to be about 655 kg/m 3 .

Storage Capacity Calculation. We have now set all of the parameters required

to calculate storage capacity. Using Eq. 2.26, we calculate the capacity of the lower

Potomac aquifer for each of our three trapping scenarios (Table 3.4). The results are

shown in Table 3.7.
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Figure 3-12: CO 2 footprint in the lower Potomac aquifer.

Footprint. In addition to a capacity estimate, our model yields the extent of the

injection plume inj and the extent of the trapped plume trap. We multiply by the

characteristic length L (Eq. 2.8) to determine the dimensional plume extents (Linj

and Ltrap), and use these values to draw the footprint of the CO 2 plume. We first

draw the injection footprint by measuring out the distance Linj on both sides of the

well array. We then draw the trapped footprint by measuring out the distance Ltrap

from the well in the direction of transport. For the lower Potomac aquifer, we draw

the CO 2 footprints as shown in Figure 3-12. We use the same convention for drawing

footprints in all other figures in this paper and omit the legend in the future for

clarity.

Parameter Variability. The parameters in our model may vary widely at the

basin scale. This variability will affect the accuracy of our capacity calculations.

While a rigorous analysis of this effect is beyond the scope of this work, we briefly

discuss the variability of some of the parameters and speculate as to the effect on our

calculations.

Some parameters vary marginally at the basin scale. For example, porosity prob-

ably changes by a factor of seven at most, likely from about 0.05 to 0.35 (Table 3.6).

Since we have defined to usable area of the reservoir to exclude any large-scale com-
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Figure 3-13: Ap as a function of depth for different geothermal gradients relevant to

sequestration [2, 14].

position changes, however, the variability is likely smaller. Density and viscosity

also do not vary much. This can be seen by considering plots of how they change

over depth, since density and viscosity are predominantly functions of temperature

and pressure, and temperature and pressure are predominantly functions of depth

(Eqs. 3.4 and 3.5). Fig. 3-13 shows that Ap is fairly constant over a wide range of

depths for different geothermal gradients relevant to geologic sequestration. Fig. 3-14

shows that the viscosities of brine and CO 2 are also nearly constant. Since the vari-

ability of these parameters is small, their effect on the capacity calculations is likely

small.

Other parameters may vary widely, but also have a small effect. Reservoir thick-

ness, for example, can vary by over an order of magnitude at the basin scale, from

tens of meters to hundreds of meters. We speculate, however, that the effect of this

variability on our capacity calculations is reasonably small. Fig. shows that changes

in thickness due to changes in the depth of the aquiclude probably do not strongly

affect CO 2 transport or trapping behavior because the CO 2 plume becomes thin very

quickly and travels close to the caprock. If changes in thickness are due to irregu-

lar changes in the depth of the caprock, the transport and trapping behavior would
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Figure 3-14: Viscosity of brine and CO 2 as a function of depth for different geothermal
gradients relevant to sequestration [52, 14].

be more strongly affected. The nature of the effect, however, would ultimately be

to trap more CO 2 through structural trapping, so our model would underestimate

storage capacity.

We conclude our discussion of parameter variability with the most problematic

parameter: permeability. Heterogeneous permeability can strongly affect our results,

and the effect is difficult to evaluate. Heterogeneous permeability could, for example,

result in channeling that would cause CO 2 to never infiltrate large portions of the

reservoir (Fig. 3-15) This behavior would decrease storage capacity. Oppositely, het-

erogeneous permeability could cause CO 2 to infiltrate more of the reservoir. This is

shown if Fig. where low permeability lenses cause C02 to spread over more of a reser-

voir instead of quickly forming a thin tongue against the caprock. Since our model

is ID, we can not resolve either of these phenomena. Even a more complex 2D or

3D model, however, would have difficulty. This is because information about the per-

meability distribution within a reservoir is often unavailable or highly approximate.

Furthermore, even if the distribution was well known, complex models could likely

not resolve its effect because variability would probably occur at the sub-gridblock



Table 3.8: List of input parameters for the injection rate model and how they are set.

Input Parameter Symbol Methodology

Time of ramping up injection T Set from injection scenario
Width of injection well array W Set from reservoir data
Reservoir thickness H Set from reservoir data
Compressibility c Set from reservoir data
Distance from well array to boundary Lpb Set from reservoir data
Intrinsic permeability k Set or calculated from reservoir data
Maximum dimensionless pressure Pmax Set or calculated from reservoir data
Viscosity of H20 Pw Calculated from reservoir data
Density of CO 2  Pg Calculated from reservoir data
Fracture overpressure Pfrac Calculated from reservoir data

scale in a basin-wide model.

3.1.3 How to Apply the Injection Rate Model

Applying our injection rate model to a reservoir requires many of the same steps

we used to apply our previous model. As before, we use data from both laboratory

experiments and reservoir studies to obtain values for the input parameters. These

parameters are listed in Table 3.8, along with the methods we use to set them.

In applying our previous model to the lower Potomac aquifer, we have already

obtained many of the parameters. For example, we know the width of the injection

well array, the reservoir thickness, and the permeability. In addition, we calculated

the viscosity of brine and the density of CO 2. For the parameters we do not know,

we demonstrate how to set them step-by-step on the lower Potomac aquifer, just as

in the previous section.

Pressure Boundaries. Applying the injection rate model requires knowing the

distances of the boundaries from the well array and the type of boundary conditions

to apply there. We obtain this information by studying geologic maps and identifying

the boundaries that will influence the evolution of pressure in a reservoir. These

boundaries may be in different locations than the reservoir boundaries we identified

previously, and to distinguish them we call them pressure boundaries.

We only identify pressure boundaries directly to the sides of the injection well
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array. This is because the position of the well array has been fixed by applying the

storage capacity model, and our one-dimensional injection rate model assumes that

pressure changes due to CO 2 injection occur only normal to the array.

We define four major types of pressure boundaries as shown in Fig. 3-16. The

first type of boundary is a no-flow boundary. It marks places where the reservoir

permeability becomes extremely low, or where the reservoir pinches out between

impermeable layers. The second type of boundary is a constant-pressure boundary.

This boundary marks features such as faults or outcrops that will likely prevent any

buildup of pressure beyond hydrostatic. The third type of boundary is what we call

an infinite boundary. It is not a boundary at all, but rather marks the direction

in which the extent of the reservoir is so large that it can be modeled as having a

boundary that is infinitely far away. The last type of boundary is a data boundary.

We use it to mark locations where the available data for a reservoir ends before one

of the first three types of boundaries can be identified. In these cases, we ultimately

make assumptions about what type of boundary the reservoir is likely to contain.

We now demonstrate how to identify pressure boundaries in the lower Potomac

aquifer. To the west of the well array, we draw a constant pressure boundary near

the Fall Line where parts of the lower Potomac crop out as shown in Fig. 3-2a. To

the east of the well array, we draw a data boundary where data becomes unavailable

for the lower Potomac off the coast of Virginia, Delaware, Maryland, and New Jersey.

These boundaries are shown in Fig. 3-17a. In order to solve the pressure equation,

however, we must replace the data boundary with a boundary that corresponds to a

mathematically well-defined boundary condition. In this case, we choose an infinite

boundary as shown in Fig. 3-17b. We choose this boundary based on the geologic

cross section in Fig. 3-2a, which suggests that the aquifer remains continuous and, in

fact, becomes thicker as it dips further under the Atlantic Ocean.

Compressibility. While in general compressibility is a complicated parameter, it

is usually simplified in groundwater analyses by assuming that rock grains are incom-

pressible and that stress in an aquifer is only vertical [20]. Under these assumptions,
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the formula for compressibility becomes [9]:

c = a + /, (3.6)

in which a is the rock compressibility and / is the fluid compressibility [9, 20]. In this

formula, the rock compressibility is a function of temperature, pressure, and applied

stress. As a result, it varies throughout a reservoir. This variability, however, is

usually small [20], and we set the rock compressibility based only on the dominant

lithology of a reservoir according to tabulated values of compressibility shown in

Table 3.9. For limestone reservoirs, we use a value of 5.8 x 10- 11Pa - 1. For sandstone

reservoirs like the lower Potomac aquifer, we use a value of 1.7 x 10-1 0Pa -

The fluid compressibility is a much more difficult parameter. While the com-

pressibility of brine is typically much smaller than the rock compressibility and can

usually be ignored, the compressibility of supercritical CO 2 can be at least as large as

the rock compressibility at conditions relevant to sequestration. As a result, it could

have a strong effect on the pressure rise due to injection. In this study, however, we

neglect this effect since the sweep efficiency of CO 2 is typically very small, and set

the bulk compressibility based only on the rock compressibility. The result of this

approximation is that our calculations likely overestimate the rate at which pressure

rises due to injection, and therefore underestimate the maximum injection rate of

CO 2.

Maximum Dimensionless Pressure. The maximum dimensionless pressure de-

pends on the types of boundaries and their locations. We calculate it for each reservoir

unless we model the reservoir as infinite. In this case, the maximum dimensionless

pressure is a constant given by Eq. 2.43.

Since we model the lower Potomac aquifer as semi-infinite, we determine the max-

imum dimensionless pressure by using the plot of ISmax versus dimensionless distance

(b in Fig. 2-12. Since the dimensionless distance from the well array to the constant

pressure boundary is about 0.86 in the long-term scenario, we find Pmax to be about



Table 3.9: Compressibility of various sandstones and limestones. Modified from [87,
Table C1]

Rock Compressibility (Pa- 1 )

Berea sandstone 1.59 x 10-10
Boise sandstone 3.69 x 10-10
Ohio sandstone 1.76 x 10- 10
Pecos sandstone 2.03 x 10-10
Ruhr sandstone 5.68 x 10-11
Weber sandstone 6.74 x 10-11

Kayenta sandstone 1.25 x 10- 10

AVERAGE 1.65 x 10-10

Limestone 8.28 x 10-11
Indiana Limestone 3.38 x 10-11

AVERAGE 5.84 x 10 - 11

1.0. We use the same plot to determine that the dimensionless time at which at which

the maximum pressure occurs is about 1.5. This corresponds to 75 years, or 25 years

after injection has stopped.

In the short-term scenario, however, the dimensionless distance from the well array

to the constant pressure boundary is about 1.2 Based on Fig. 2-12, this distance is

large enough for the boundary to have a negligible effect on the pressure rise. As a

result, we model the aquifer as infinite in this scenario and use the value of Pmax given

in Eq. 2.43.

Fracture Overpressure. For the lower Potomac aquifer, the least principal stress

is likely the vertical stress based on Fig. 2-16. As a result, we define the fracture

overpressure to be the effective vertical stress. We calculate the effective vertical

stress using Eq. 2.50 for the depth at the top of the reservoir directly under the

injection well array. This is the location where the caprock would first fracture. For

this depth, we calculate the fracture overpressure to be 17.2 MPa.

Maximum Injection Rate. We now have all of the parameters required to calcu-

late the maximum injection rate of CO 2 from our injection rate model. We substitute



these parameters into Eq. 2.47 and calculate the maximum injection rate to be about

360 Mton/yr in the short-term scenario and 220 Mton/yr in the long-term scenario.

Now that we have demonstrated how to apply our models, we repeat the steps

to model storage capacity and injection rate in each of remaining 16 reservoirs we

study. In many cases, they are repeated exactly as we have demonstrated on the

lower Potomac aquifer. In some cases, however, there are changes. When there are

changes, we explain the changes in the following sections that address the reservoirs

individually. In these sections, the number preceding the reservoir name refers to the

number marking the reservoir's footprint in our Hydrogeologic Footprint Map.

3.2 Lawson Formation and lower Cedar Keys For-

mation

3.2.1 Geology and Hydrogeology

The Lawson Formation and lower Cedar Keys Formation occur in the South Florida

Basin (Fig. 3-18). Due to limited studies, however, their exact extent is difficult to

determine. In general, data suggests they are continuous from the southern tip of

Florida to at least the panhandle [3, Figs.7,8]. Data also suggests they dip to the

south and thicken to the south, as shown in Fig. 3-19.

The Lawson Formation is Upper Cretaceous in age [3, Table 1]. It consists of two

members. Its lower member is mostly white chalk that is irregularly interbedded with

chalky dolomite or dolomitic chalk. Its upper member is finely to coarsely crystalline

dolomite that contains gypsum and anhydrite [4, p.G26-G27]. The Lawson Forma-

tion overlies unnamed carbonate beds of Taylor age. Over the Florida peninsula,

these beds consist mostly of chalky dolomite interbedded with few beds of shale or

marlstone [3]. We choose these beds to be the bottom boundary in our model since

we found almost no information about them.

The Lawson Formation is unconformably overlain by the lower Cedar Keys Forma-

tion. The lower Cedar Keys Formation is Tertiary in age and consists of limestone [4].



It is overlain by the middle Cedar Keys Formation, which is composed of massively

bedded anhydrite [36, p.72]. These anhydrite beds are nearly impermeable and rep-

resent the caprock in our model [60].

Porosity and permeability in the Lawson and lower Cedar Keys formations are

poorly studied. We found data for only one well in which porosity ranged from 24.5

to 28% and permeability ranged from about 5 to 28 mD [27, quoted in [36]]. In the

absence of additional data, we use mean values of 26% and 16 mD to characterize the

formations. The flow direction in the formations is unknown, but the fluid residence

time has been estimated to be more than 20,000 years [36, p.74].

3.2.2 Storage Capacity

We make a number of assumptions in modeling the Lawson and lower Cedar Keys

formations. First, we assume that the formations are continuous across peninsular

Florida. Secondly, we assume that the amount of gypsum and anhydrite in the

formations is small and negligibly affects their storage capacity. Lastly, since the

flow direction is unknown, we assume that it is similar to the flow direction in the

overlying Floridan aquifer [60, Fig.60]. Under this assumption, ground water moves

from central Florida toward the coast as shown in Fig. 3-20.

We identify boundaries in the lower Cedar Keys and Lawson formations as shown

in Fig. 3-21a. Since the reservoir is poorly studied, we draw most of the boundary as

a data boundary along the coast, beyond which we found no information about the

reservoir. We draw a smaller part of the boundary as a hydraulic boundary to the

northwest, corresponding to a cone of depression in the potentiometric surface [60,

Fig.60]. Lastly, we draw a leak boundary to the north at the limit of the caprock for

the overlying Floridan aquifer. While we previously identified the middle Cedar Keys

Formation as a caprock, we place the boundary according to the Floridan aquifer

caprock as an extra precaution to limit the probability of CO 2 leakage. We take

this precaution because, although a map of the middle Cedar Keys shows that it

contains very thick beds of anhydrite in northern Florida, this map could be very

inaccurate [34, Map c7cedarkeyg]. This is because it is not based on regional well



data, but is instead extrapolated from percent-anhydrite maps and the thickness of

the total Cedar Keys Formation.

Based on the depth map and the assumed flow direction shown in Figs. 5-2a and 3-

20, transport due to groundwater flow and caprock slope in the reservoir will likely

not be colinear. As a result, we evaluate the ratio of the flow number Nf to the slope

number Ns to determine the dominant mechanism (Eqs. 2.15 and 2.11). Since this

ratio is about 0.09, we neglect transport due to groundwater flow and only model

transport due to up-slope migration.

We select the domain for our model as shown in Fig. 3-21b. We calculate the

average storage capacity to be 16.0 Gton of CO 2 and draw the CO 2 footprint as

shown in Fig. 3-22.

3.2.3 Injection Rate

We set the compressibility of the Lawson and Cedar Keys formations to 5.84 x 10-11 Pa-

based on Table 3.9 since they consist mostly of carbonate. We identify pressure

boundaries as shown in Fig. 3-23. We place infinite boundaries along the reservoir

border because, although the distance from the well array to the border changes

along the array, the dimensionless distance is at least greater than 1.5 along most of

the array in both the short-term and long-term scenarios. According to Fig. 2-12,

boundaries at this distance will have a small impact on the evolution of pressure at

the well array.

We now calculate the fracture overpressure in the lower Cedar Keys and Lawson

formations. We define this pressure to be the effective horizontal stress. Although

there is no available data in Florida to indicate the relative magnitudes of the principle

stresses [96], we assume that the horizontal stress is the least principal stress since

Florida sits in the Gulf Coast physiographic province as shown in Fig. 2-16. Using

Eq. 2.51, we calculate the effective horizonal stress to be about 8.5 MPa. We use

Eq. 2.47 to calculate the maximum injection rate for the lower Cedar Keys and Lawson

formations to be about 22 Mton/yr in the short-term scenario and 15 Mton/yr in

the long-term scenario.
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Figure 3-23: Pressure boundary for the lower Cedar Keys and Lawson formations.



3.3 Mt. Simon Formation

3.3.1 Geology and Hydrogeology

The Mt. Simon Formation is widespread in the Midwestern United States. In this

study, we model sequestration in deep parts of the formation that lie in the Ap-

palachian, Michigan, and Illinois basins.

The Appalachian Basin starts at the Canadian Shield in the north and tapers

to the south in between thrust faults and the Nashville Dome (Fig. 3-24a). In the

west, it begins at a contiguous series of domes and arches in Ohio, Kentucky, and

Tennessee, and it extends to the Blue Ridge province in the east. In general, it dips

and thickens to the east as shown in Figure 3-24b.

The Michigan Basin underlies Michigan and northern parts of Illinois and Ohio

(Fig. 3-25a). It dips and thickens toward the center of the basin as shown in the

generalized cross section in Figure 3-25b.

The Illinois Basin underlies parts of Illinois, Indiana, and Kentucky (Fig. 3-26a).

It also dips and thickens towards the center of the basin as shown in Figure 3-26b.

The geology of the Mt. Simon Formation is fairly uniform across these basins.

The formation is Cambrian in age and consists mostly of quartzose sandstone. The

grains of the sandstone range from fine to very coarse and are poorly to moderately

sorted [94, p.B13]. Near its base, the formation tends to contain a strongly arkosic

zone that is as much as 100m thick and can be conglomeratic with igneous pebbles [92,

36]. Lenses of shale are interbedded in the lower part of the formation in Illinois, and

in the upper part of the formation throughout the Midwest [94, p.B13].

The Mt. Simon Formation is overlain by the Eau Claire Formation, which is

composed of silty dolomites, dolomitic sandstones, and shale. This formation has

been identified as a regional confining unit by a number of authors [65, 94, 56].

The Mt. Simon unconformably overlies Precambrian igneous and metamorphic rocks,

which we take as an aquiclude [92, 36].



3.3.2 Storage Capacity

Modeling sequestration in the Mt. Simon Formation is difficult due to a lack of data.

We found no single formation thickness map that covers the Michigan, Illinois, and

Appalachian basins, and we found no data on net sandstone thickness. For the

formation thickness, we construct the map shown in Figure 3-27b from three different

maps: a map for Indiana [85, Fig.8], a map for Illinois [84, Fig.25], and a map

for Michigan and Ohio [34, Map c3mtsimong]. We use this map as a proxy for a

net sandstone thickness map since we found no net sandstone thickness data. This

approximation is justified because the Mt. Simon consists mostly of sandstone.

While we found no net sandstone thickness data, we found limited porosity and

permeability data data. The only data we found comes from one well in the Michigan

Basin, in which porosity was measured for four samples of the Mt. Simon Sandstone.

The porosity of these samples ranges from 13.1 to 15.8%, with a mean of about

14% [13, p.140]. Measurements from the same well indicate that permeability ranges

from 29.5 to 117.0 mD [13, p.140], with a mean of about 52 mD. In the absence of

additional data, we assume the mean porosity and permeability are characteristic of

the Mt. Simon.

While we found limited porosity data for the Mt. Simon, we found no regional

flow direction map that covers all the basins. Instead, we found maps that cover only

one basin or parts of a basin, and the data in these maps often lead to contradictory

flow directions in between the basins. As a result, we ignore regions in between basins

and model sequestration in the basins only, where flow direction is better understood.

Flow directions in the basins are shown in Figure 3-28.

With the flow direction identified, we draw boundaries for the Mt. Simon Forma-

tion as shown in Figure 3-29a. In the Appalachian Basin, the southwestern part of

the boundary is a fault boundary, drawn along faults shown in a nation-wide geologic

map [77]. The eastern part is a data boundary, corresponding to the edge of the For-

mation Thickness Map [34, Map c3mtsimong]. The northern and western parts are

also data boundaries, corresponding to where the flow direction becomes uncertain



at the edge of the basin. Within these boundaries, we select the model domain as

shown in Fig. 3-29b. We calculate an average storage capacity of 4.4 Gton of CO 2

and draw the CO 2 footprint as shown in Fig. 3-30.

In the Michigan Basin, the southern part of the boundary is a data boundary due

to uncertainties in flow direction between the basins (Fig. 3-29a). The eastern part of

the boundary is a caprock pinchout boundary, corresponding to where the Eau Claire

Formation pinches out [34, Map c7mtsimonallg]. The western part of the boundary

contains fault boundaries [77]. It also contains hydraulic boundaries at depressions

in the potentiometric surface due to pumping in major cities [67, Fig.127].

Within this basin, transport due to groundwater flow and up-slope migration will

not be colinear. To determine the dominant mechanism, we compare the flow number

Nf to the slope number Ns (Eqs. 2.11 and 2.15). Since the average value of Nf\Ns

is about 0.3, we conclude that up-slope migration is dominant and ignore the effect

of ground water flow in our model. Since we ignore ground water flow, we select the

model domain based only on the constraint of nearly linear, parallel depth contours,

which is required for one-dimensional up-slope transport (Fig. 3-29b ). We calculate

the average storage capacity to be 48.5 Gton of CO 2 and draw the CO 2 footprint as

shown in Fig. 3-30.

In the Illinois Basin, the southern and eastern parts of the boundary are fault

boundaries (Fig. 3-29a) [77]. The northern part is a hydraulic boundary, correspond-

ing to depressions in the potentiometric surface from pumping in major cities [56,

Fig.33A]. The western part is a data boundary, corresponding to the edge of the

Mt. Simon Depth Map [34, Map c3mtsimong] and the edge of the Mt. Simon isopach

map [84]. Within these boundaries, we select the model domain as shown in Fig. 3-

29b, based on the region over which transport due to ground water flow and up-slope

migration are colinear. We calculate an average storage capacity of 21.7 Gton of CO 2

and draw the CO 2 footprint as shown in Fig. 3-30.



3.3.3 Injection Rate

We identify pressure boundaries in the Mt. Simon as shown in Fig. 3-31a. These

boundaries include constant pressure boundaries due to faults in all of the basins, and

a no-flow boundary due to likely confined pinchout in the Appalachian Basin [74].

These boundaries, however, are unimportant due to their distances from the well

arrays: for each well array, the dimensionless distances to the boundaries are greater

than 2.5 for both the short-term and long-term scenarios, allowing us to model the

Mt. Simon as an infinite aquifer (Fig. 3-31b). As a result, for each well array we take

Pmax to be 0.87, the value previously determined for an infinite aquifer (Eq. 2.43).

We next calculate the fracture overpressure for each of the well arrays. In the

Mt. Simon Formation, we define the fracture overpressure to be the effective vertical

stress in the reservoir, since vertical stresses are typically the lowest stresses in the

Midwest based on Fig. 2-16. Using Eq. 2.50, we calculate the effective vertical stress to

be about 39.6 MPa under Well Array a, 45.5 MPa under Well Array b, and 21.1 MPa

under Well Array c.

Setting the effective vertical stress equal to the fracture overpressure, we calculate

the maximum injection rate for each well array with Eq. 2.47. We calculate the

maximum injection rate for Well Array a to be about 380 Mton/yr in the short-term

scenario and 270 Mton/yr in the long-term scenario. For Well Array b, the maximum

injection rate is about 750 Mton/yr in the short-term scenario and 530 Mton/yr in

the long-term scenario. For Well Array c, the maximum injection rate is about

71 Mton/yr in the short-term scenario and 50 Mton/yr in the long-term scenario.
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Figure 3-28: Flow direction in the Mt. Simon Formation. Streamlines in the Ap-
palachian modified from [26, Fig.8]. Streamlines in the Michigan Basin based on [35,
Flow Direction Map for the Mt. Simon Sandstone]. Streamlines in the Illinois Basin
based on [56, Fig.33A] and [94, Fig.24].
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Figure 3-29: Boundaries and model domains for the Mt. Simon Sandstone.



Figure 3-30: CO 2 footprints in the Mt. Simon Formation.
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Figure 3-31: Actual and modeled pressure boundaries in the Mt. Simon Formation.



3.4 Madison Limestone

3.4.1 Geology and Hydrogeology

The Madison Limestone occurs in the Williston Basin. This basin extends from the

northern Great Plains into Canada, but we focus only on the part in the United

States, shown in Figure 3-32a. In general, the basin dips and thickens towards its

center in western North Dakota as shown in the cross sections in Figure 3-32b. The

Madison Limestone follows these trends, and its shape can be seen in greater detail

in the depth and thickness maps in Figure 3-33.

The Madison Limestone is Mississippian in age. It consists of a sequence of carbon-

ates and evaporates that are divided into three formations. From oldest to youngest,

these are the Lodgepole Limestone, the Mission Canyon Limestone, and the Charles

Formation. The Lodgepole Limestone consists mainly of argillaceous, thin-bedded

limestone and dolomite. The Mission Canyon Limestone consists mainly of limestone

that is coarsely crystalline at its base and finer at its top. The Charles Formation

consists of anhydrite and halite with interbedded dolomite and limestone [16].

In the Williston Basin, the Madison Limestone is overlain by the Big Snowy Group.

This group consists mostly of shale and sandstone, with minor limestone. We model

it together with the Charles Formation as the aquitard in this study. The Madison is

underlain by the Bakken Formation in the Williston Basin. This formation consists

of more than 30 meters of shale and siltstone, and we model it as an aquiclude [16].

The transmissivity of the Madison Limestone varies between about 20 and

275 m2/day [16, Fig.30]. The large variability is due to karst features such as caves and

solution breccias [36, p.132]. The flow direction is predominantly east or northeast,

as shown in Figure 3-34.

3.4.2 Storage Capacity

To model the Madison Limestone, we first calculate the depth and thickness of the

formations we target for sequestration: the Lodgepole Limestone and the Mission
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Canyon Limestone. We calculate depth by adding the thickness of the Charles For-

mation to the depth of the Madison. We calculate thickness by subtracting the

thickness of the Charles from the Madison. The difficulty, however, is that we found

no thickness map for the Charles Formation. As a result, we approximate its thick-

ness based on two pieces of information. The first piece is a map of the total thickness

of evaporites in the formation, shown in Figure 3-35. The second piece is the ratio

of evaporite thickness to total formation thickness, which varies between 0.30 and

0.45 [16, p.62]. Assuming that the average ratio of 0.375 is fairly constant throughout

the basin, we calculate the thickness of the Charles Formation by dividing the total

evaporite thickness by this ratio.

While calculating depth and thickness is somewhat difficult, setting a representa-

tive porosity for the Madison is also difficult. The difficulty arises due to large spatial

variability from karst features. As a result of this variability, the porosity map we

found does not show porosity directly, but rather shows the total thickness of rocks

having porosity greater than or equal to 10% [16, Fig.35]. By comparing this map to

the total thickness of the Madison in Figure 3-36, we find that only small proportions

of the Madison have porosity greater than or equal to 10%. Based on this observa-

tion, we set the porosity to an arbitrarily lower value of 8%. This value, however,

likely underestimates the porosity in the formations we target for sequestration. The

reason is that the porosity map describes the entire Madison Limestone, so it includes

information about the low-porosity Charles Formation.

Karst features also make setting permeability difficult. A transmissivity map

shows that the distribution of transmissivity is very complex at the basin scale [16,

Fig.30]. As a result of this complexity, we set transmissivity by simply choosing a

low value in the model domains (Fig. 3-38b). We choose a low value for safety: it will

cause our injection rate model to overestimate pressure buildup at the array, leading

to a lower calculated CO 2 injection rate. After choosing a low transmissivity, we

convert it to hydraulic conductivity by dividing by the average reservoir thickness,

and then convert hydraulic conductivity to permeability using Eq. 3.1. Using this

method, we calculate a permeability of 16 mD for the eastern model domain and a
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permeability 58 mD for the western model domain.

While the Madison is widespread in the Williston Basin, the area available for

sequestration is strongly constrained by faults and the extent of the caprock, shown in

Fig. 3-37. We draw boundaries based entirely on these features as shown in Figure 3-

38a.

Since faults divide the boundary into two separate parts, we use two injection

well arrays for sequestration. The CO 2 footprints from our calculations are shown in

Figure 3-39. For Well Array a, we calculate an average storage capacity of 8.8 Gton

of CO 2 . For Well Array b, we calculate an average capacity of 3.1 Gton. This leads

to a total storage capacity for the Madison Limestone of about 11.9 Gton of CO 2.

3.4.3 Injection Rate

We set the compressibility of the Madison to 5.8 x 10-"Pa -1 based on Table 3.9 since

the reservoir consists mostly of carbonate. We identify pressure boundaries as shown

in Figure 3-40. All of these boundaries are constant pressure boundaries, based on

large faults which we assume cut the Madison and prevent any buildup of pressure

beyond hydrostatic (3-37).

With permeability and compressibility set, we now calculate the maximum dimen-

sionless pressure ,,max for each well array. For Well Array a, the dimensionless distance

to the eastern boundary is large ((b = 3), so we model the eastern extent as infinite.

The distance to the western boundary, however, is small, so we model the aquifer as

semi-infinite. To calculate nimax, we use the plot of (b VS. imax previously calculated

for semi-infinite aquifers and find Pmax to be 0.61 in the short-term scenario and 0.49

in the long-term scenario. For Well Array b, we also make the semi-infinite approx-

imation since the dimensionless distance to its western boundary is also reasonably

large ((b = 1). For this array, we find Pmax to be 0.78 in the short-term scenario and

0.67 in the long-term scenario.

We define the fracture overpressure of the Madison Limestone to be the effective

vertical stress in the reservoir, since vertical stresses are typically the lowest stresses

in the Williston Basin based on Figure 2-16. Using Eq. 2.50, we calculate the effec-
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tive vertical stress to be about 29.7 MPa for Well Array a and 35.6 MPa for Well

Array b. Setting these equal to the fracture overpressures, we calculate the maximum

injection rate for Well Array a to be about 190 Mton/yr in the short-term scenario

and 168.9 Mton/yr in the long-term scenario. For Well Array b, we calculate the

maximum injection rate to be about 180 Mton/yr in the short-term scenario and

150 Mton/yr in the long-term scenario.
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Figure 3-32: Outline of the Williston Basin with cross section. (a) Modified from [90,

Fig.12]. (b) Modified from [90, Fig.11].
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Figure 3-33: Depth and thickness of the Madison Limestone. (a) Modified from [34,

Map c1madisong]. (b) Modified from [16, Fig.11].

Figure 3-34: Flow direction in the Madison Limestone. Based on [90, Fig.60].
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Figure 3-35: Total thickness of evaporites in the Charles Formation. Based on [75,
Fig.16].
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Figure 3-36: Porosity data for the Madison Limestone overlayed by the total thickness
of the Madison. Porosity data based on [16, Fig.35]. Thickness data modified from [16,
Fig.11]
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Figure 3-37: Outline of the Williston Basin showing faults and the extent of the Big

Snowy Group caprock. Basin map modified from [90, Fig.12]; fault map modified

from [16, Fig.16]; and Big Snowy Group map modified from [16, Fig.12].

(a) Boundaries (b) Model domains

Figure 3-38: Boundaries and model domains in the Madison Limestone.

Figure 3-39: CO 2 footprints in the Madison Limestone.
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Figure 3-40: Pressure boundaries in the Madison Limestone.

3.5 Frio Formation

3.5.1 Geology and Hydrogeology

The Frio Formation occurs in the Gulf Basin in Texas (Fig. 3-41). Starting at outcrops

about 150km inland from the coast, it dips and thickens uniformly toward the coast

as shown in figures 3-42a and 3-42b, reaching depths of more than 3000m below sea

level [32, p.21].

The Frio Formation is Oligocene in age [19, Fig.2]. It is highly heterogeneous

and contains a number of depositional facies, including fluvial, deltaic, and barrier

island sands [33]. These sands contain mostly quartz with about 30% feldspar, and

are commonly interbedded with shale [50, 33]. The Frio Formation is overlain by the

Anuhac Formation and underlain by the Vicksburg Group and Jackson Group. These

units are composed dominantly of clay and form effective an effective aquitard and

aquiclude [73].

Permeability and porosity in the Frio Formation vary strongly with depositional

facies. Permeability measured from core samples ranges 10 to 6000 mD, with most
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samples having permeabilities between 100 and 6000 mD [35]. Porosity ranges from 15

to 40%, as shown in Figure 3-42d. The flow direction in the formation is complicated,

as shown by the isopotential map in Fig. 3-44a.

3.5.2 Storage Capacity

We identify the boundaries of the Frio Formation as shown if Fig. 3-43. The western

boundary is an outcrop boundary based on Fig. 3-41. The northern and southern

boundaries are data boundaries, corresponding to the edges of the depth, thickness,

and isopotential maps we found [34]. Lastly, the eastern boundary is a reservoir

pinchout boundary that marks where the net sandstone thickness becomes zero [34].

Calculating the storage capacity of the Frio Formation with our model is challeng-

ing. The first challenge results from the potentiometric surface, shown in Fig. 3-44a.

Since the potentiometric contours display significant curvature, it is nearly impossible

to place long injection well arrays parallel to contours to ensure that flow is normal

to the arrays, as required by our one-dimensional model. As a result, we evaluate

the effect of ground water flow on transport relative to the effect of caprock slope

by comparing the flow number Nf to the slope number Ns throughout the reservoir

(Eqs. 2.15 and 2.11). While these numbers can have similar magnitudes in areas

where the isopotential contours are dense, the slope number becomes the dominant

term in at least three broad areas. We refer to these areas as Region a, Region b, and

Region c, and choose them as the domains for our model as shown in Fig. 3-44b.

In addition to complicated flow directions, modeling is difficult because of faults

in the caprock, shown in Fig. 3-45. Because these faults are numerous, we cannot

avoid them and instead neglect them, assuming that their leakage rates are small

compared to the CO 2 injection rate and total storage capacity. If this assumption is

incorrect, younger middle Miocene deposits provide an additional seal [73, Fig.26].

Permeability and density variations also pose a challenge. Setting characteristic

values requires considering the locations of the model domains within the reservoir

since permeability and porosity vary with depositional facies, and the Frio contains

different depositional facies in different locations. To set porosity, we use the regional
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porosity map shown in Fig. 3-42d and select an average value for each domain. Set-

ting permeability is slightly more difficult because it exhibits higher variability. Maps

show that permeability varies laterally from less than 10 mD to about 6000 mD at

scales much smaller than the model domain [35]. Variability is also large in the ver-

tical dimension, with permeability ranging from about 1 to 10,000 mD [53, Fig.27].

To characterize the Frio Formation, we choose a permeability of 500 mD, which is

approximately the mode of the data. We note, however, that this is a significant sim-

plification: as discussed previously, the large variations in permeability could greatly

affect our results.

For Region a, we calculate an average storage capacity of 9.7 Gton of CO 2 . For

Region b, we calculate an average capacity of 13.4 Gton of CO 2. For Region c, we

calculate an average capacity of 12.7 Gton of CO 2. Summing these capacities leads

to a total average capacity of 35.8 Gton of CO 2 for the Frio Formation. The CO 2

footprints from our calculations are shown in Fig. 3-46.

3.5.3 Injection Rate

We set the compressibility of the Frio Formation to 1.7 x 10-10 Pa - 1 since the aquifer

consists mostly of sandstone (Table 3.9). We identify pressure boundaries as shown in

Fig. 3-47a. The eastern boundary is a no-flow boundary based on the where the net

sandstone thickness becomes zero as shown in Fig. 3-42c. While the net-sandstone

thickness map does not show a sandstone thickness of zero in the very southern part

of the reservoir, we assume that it becomes zero beyond the edges of the map for

consistency with the lithology of the central and northern parts of the reservoir. This

assumption is safe because it will cause us to underestimate the maximum injection

rate. The western boundary is a constant-pressure boundary based on the location of

outcrops shown in Fig. 3-41. Since the dimensionless distances from the well arrays

to this boundary are very large ((b > 1.2), however, we model this boundary as an

infinite boundary as shown in Fig. 3-47b.

With the pressure boundaries identified, we now determine the maximum dimen-

sionless pressure pmax for each well array. We use the plot in Fig. 2-12 which shows
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pmax as a function of b for semi-infinite reservoirs. For Well Array a, Pmax is about

1.38 in the short-term scenario based on a dimensionless distance of about 0.32; in

the long-term scenario, Pmax is about 1.47 based on a dimensionless distance of about

0.23. For Well Array b, Pmax is about 1.2 in the short-term scenario based on a

dimensionless distance of about 0.49; in the long-term scenario, 6max is about 1.35

based on a dimensionless distance of about 0.34. For Well Array c, max is about 1.3

in the short-term scenario based on a dimensionless distance of about 0.40; in the

long-term scenario, Pmax is about 1.4 based on a dimensionless distance of about 0.29

We define the fracture overpressure in the Frio Formation to be the smallest

effective horizontal stress in the reservoir, since horizontal stresses are typically the

lowest stresses in the Gulf Basin based on Fig 2-16. Using Eq. 2.51, we calculate the

effective horizontal stress to be about 9.1 MPa under well arrays a and b, and about

11.3 MPa under Well Array c.

Setting the fracture overpressure equal to the effective horizontal stress, we cal-

culate the maximum injection rate for each well array. We calculate the maximum

injection rate for Well Array a to be about 110 Mton/yr and 70 Mton/yr of CO 2 in

the short-term and long-term scenarios, respectively. For Well Array b, it is about

140 Mton/yr and 87 Mton/yr in the short-term and long-term scenarios, respectively.

For Well Array c, it is about 130 Mton/yr and 88 Mton/yr in the short-term and

long-term scenarios, respectively.
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Figure 3-41: Map of the Gulf Basin showing outcrops of the Frio Formation. Basin

map modified from [22]. Outcrops modified from [34, Map friooutcrop].
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Figure 3-42: Data for the Frio Formation. (a) Depth map, modified from [34, Map

clfriogl]; (b) thickness map, modified from [34, Map c3friog]; (c) net sandstone thick-

ness map, modified from [34, Map c4friog]; (d) porosity map, modified from [35,

Porosity Map].
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Figure 3-43: Boundaries of the Frio Formation.
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Figure 3-44: Isopotential contours and model domains in the Frio Formation. We
choose the model domains in regions in which isopotential contours are sparse so that
transport is dominated by up-slope migration. (a) Modified from [34, Map 1frio].

114

High head



- Caprockfaults

0 50 MILES
0 50 KILOMETERS

Figure 3-45: Faults in the Anuhac Formation, the caprock of the Frio Formation.
Modified from [34, Map 1frio].
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Figure 3-46: CO 2 footprints in the Frio Formation.
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Figure 3-47: Actual and modeled pressure boundaries in the Frio Formation. We
model the western boundary as an infinite boundary since it is very far away from
the well arrays.
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Chapter 4

Results

The storage capacity and maximum injection rate for each reservoir are shown in

Table 4.1. The CO 2 footprints in each reservoir are shown in Fig. 4-1.

4.1 Storage Capacity

For a particular reservoir, the range of storage capacities is about 75% of the average

storage capacity. For all reservoirs, the range of storage capacities is 2.0 to 67.5 Gton

of CO 2 . The range of average storage capacities is 3.1 to 48.5 Gton of CO 2. A

histogram of the average storage capacities is shown in Fig. 4-2.

The total storage capacity for all basins ranges from 89.9 to 196.6 Gton of CO 2.

The average total storage capacity is 143.6 Gton of CO 2.

4.2 Efficiency Factor

For a particular reservoir, the range of efficiency factors is about 40% of the average

efficiency factor. For all reservoirs, the range of efficiency factors is about is 0.028 to

0.102. The range of average efficiency factors is 0.031 to 0.088. A histogram of the

average efficiency factors is shown in Fig. 4-2.
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4.3 Injection Rate

The injection rates we calculate are defined with respect to a particular injection

scenario: for the short-term scenario, the injection rates are the peak rates after a 25

year period of linearly ramping up injection; for the long-term scenario, they are the

peak rates after a 50 year period of linearly ramping up injection (see Fig. 2-7). For the

short-term scenario, maximum injection rates range from 22 to 750 Mton/yr of CO 2 ,

with a mean of 230 Mton/yr. The cumulative maximum injection rate for all reservoirs

is 2300 Mton/yr of CO 2 . For the long-term scenario, maximum injection rates range

from 15 to 530 Mton/yr of C0 2 , with a mean of 160 Mton/yr. In this scenario, the

cumulative maximum injection rate is 1700 Mton/yr of CO 2. A histogram of the

results is shown in Fig. 4-4.
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Table 4.1: Table of reservoirs we study with efficiency factors, storage capacities, and maximum injection rates.

Reservoir Number Storage Efficiency Capacity (Gton) Max. Rate (Mton/yr)

Min. Avg. Max. Min. Avg. Max. 25 yrs. 50 yrs.

Lower Potomac 1 0.032 0.043 0.050 3.3 5.3 7.3 360 220

Cedar Keys 2 0.029 0.031 0.044 10.0 16.0 21.7 22 15

Mt. Simon 3a 0.069 0.088 0.102 14.1 21.7 29.2 380 270

Mt. Simon 3b 0.045 0.061 0.073 29.7 48.5 67.5 750 530

Mt. Simon 3c 0.030 0.041 0.048 2.7 4.4 6.1 71 50
Madison 4a 0.040 0.052 0.061 5.6 8.8 12.0 190 170

Madison 4b 0.067 0.084 0.095 2.0 3.1 4.1 180 150

Frio 5a 0.028 0.038 0.044 6.1 9.7 13.1 110 70

Frio 5b 0.030 0.039 0.046 8.4 13.4 18.3 140 87

Frio 5c 0.031 0.041 0.048 8.0 12.7 17.3 130 88
SUM 89.9 143.6 196.6 2300 1700



Chapter 5

Discussion and Conclusions

5.1 Estimation of Future US Emissions

We compare our results with estimates of CO 2 emissions from the United States

over the next 50 years. Our estimates have four main features. First, we consider

only emissions from coal-burning power plants. This simplification is justified for

three reasons. First, we focus on emissions from energy consumption because these

emissions account for most emissions in the United States: since 2000, the CO 2

emitted due to energy consumption has been at least 99% by mass of the total CO 2

emitted [17, Table 5]. Second, we focus on power plants because they are large point

sources where CO 2 capture technology will likely first be deployed [39]. Third, we

focus on coal-burning power plants because they emit more CO 2 than any other type

of power plant: since 2000, coal-burning plants have emitted at least 80% by mass of

the total CO 2 emitted by electricity-producing power plants [17, 61].

The second key feature in our estimation is the emission scenario: we consider

a high-emissions, end-member scenario derived from Monte Carlo simulations that

consider how 100 parameters such as energy-usage trends and fossil fuel availability

contribute to future emissions [88]. In this scenario, coal consumption grows by a

factor of 2.7 over the next 50 years. We also assume that emissions grow by an

additional factor of 1.3 to based on the increased energy demands of CO 2 capture

processes [88].
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The third key feature is that we estimate the total amount of CO 2 that can be

captured. Based on current projections, we assume that 90% of emissions will be

captured [88, 68].

The fourth key feature is that in addition to considering how emissions will increase

in the future, we consider how emissions will evenly decrease following the deployment

of technologies to reduce fossil fuel consumption. This is an extension of the concept

of sequestration wedges [69], and was explained earlier in reference to our injection

rate model (see Fig. 2-7).

From the above considerations, we construct a short-term and a long-term emis-

sions scenario as shown in Fig. 5-1. In the short-term scenario, the capturable emis-

sions linearly increase to 4000 Mton/yr of CO 2 in the year 2035, and then linearly

decrease to the current levels in 2060. In the long-term scenario, the capturable emis-

sions increase to about 6200 Mton/year of CO 2 in the year 2060 and then decrease

to the current level in 2110. For comparison to our storage capacity and injection

rate results, we subtract the current emission rate, which is about 1900 Mton/year

of CO 2 [17, Table 11]. From this calculation, we estimate that in 2035 CO 2 will be

emitted at a rate of about 2100 Mton/yr above the current emission rate, and in 2060

CO 2 will be emitted at a rate of about 4300 Mton/yr above the current emission rate.
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Figure 5-1: Plot of estimated US emissions of CO 2 over the next 50 above the current
emission rate.

5.2 Comparison with Storage Capacity

We compare our storage capacity results with the total capturable emissions from

the short-term and long-term scenarios. This is the area under the curves in Fig. 5-

1: approximately 53 Gton of CO 2 for the short-term scenario and 210 Gton for the

long-term scenario. Since the total average storage capacity of all of the reservoirs

we study is 140 Gton of CO 2 (Table 4.1), we conclude that the United States has

enough capacity in deep saline aquifers to store all the capturable CO 2 emitted in the

short-term scenario.

While the capacity of the aquifers we study is less than the total emissions in

the long-term scenario, we argue that the US still likely has enough capacity. This

argument is based on the observation that our results are a significant underestimation

of the nationwide storage capacity. This is because of three reasons. The first reason

comes from our methodology. We calculate capacity by requiring that the trapped

plume exactly fit in the reservoir (Ch. 2). While we choose this requirement to

preclude leakage at reservoir boundaries, it causes a large fraction of the reservoir

pore volume to be unused. If we relax this requirement and accept some degree of

leakage, the storage capacity would be higher. This is shown in Fig. 5-2.
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Figure 5-2: Illustration of how requiring the CO 2 plume to fit in the reservoir leads

to a low estimation of the reservoir's capacity. (a) When the plume fits exactly in

the reservoir, no CO 2 is lost to leakage, but a large fraction of the reservoir is not

infiltrated by CO 2 and is not used for storage. (b) When the plume exceeds the size

of the reservoir, some CO2 is lost to leakage, but more of the reservoir is infiltrated

by CO 2 and is used for storage.

The second reason that we underestimate capacity is that we do not model the

whole reservoir. As discussed in Ch. 3, the area of a reservoir that we can model is

limited because our model is one dimensional. Typically, the area that we model is no

more than 50% of the area within the reservoir boundaries. As a result, the capacity

of a reservoir is likely at least twice as large as the capacity we calculate.

The final reason that we underestimate the country's capacity is that we model

only a small fraction of available reservoirs: we model reservoirs in only five basins,

but there are over thirty basins in the conterminous United States (Fig. 1-1). Many of

them, such as the Anadarko Basin, are large and equally amenable to sequestration.

In addition, we model only one reservoir in each basin we do study. In most cases,

however, a basin contains many reservoirs that could be used for sequestration. The

Illinois Basin, for example, contains the St. Peter Sandstone, and the Gulf Coast

Basin contains the Jasper Interval [36].
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5.3 Comparison with Injection Rate

We compare our injection rate results with the maximum emission rates in the short-

term and long-term scenarios. These are the emission rates at the peaks in Fig. 5-1:

2100 Mton/year of CO 2 in the short-term scenario and 4200 Mton/yr in the long-

term scenario. Since the cumulative maximum injection rate we calculate for all the

aquifers in the short-term scenario is 2300 Mton/yr of CO2, we conclude that the

United States can sequester CO 2 at the same rate it is emitted in the short-term

scenario. The cumulative maximum injection rate for all the aquifers in the long-

term scenario (1700 Mton/yr), however, is smaller than the peak emissions rate in the

long-term scenario (4200 Mton/year). This suggests that for the long-term scenario,

the US would not be able to sequester CO 2 at the same rate it is emitted without

risking fracturing one or more of the aquifers.
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Appendix A

Data

This appendix lists all input data to our models. As discussed in the text, values for

depth, net thickness, porosity, caprock slope, Darcy velocity, intrinsic permeability,

density, viscosity, and compressibility are averages over the model domain. Negative

values for slope indicate that up-slope migration occurs in the opposite direction of

transport due to ground water flow.
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A.1 lower Potomac aquifer

Table A.1: Parameters for the lower Potomac aquifer.

Parameter Symbol Value Data Source

Depth (m) z 1033 [34, Map c1potomac]
Net Thickness (m) H 250 [34, Map c4potomacg]
Length of Model Domain (km) Ld 117 Fig. 3-8
Width of Well Array (km) W 52 Fig. 3-8
Porosity 0.2 Assumed value
Caprock Slope 0 0.006 [34, Map c1potomac]
Darcy Velocity (cm/yr) U 10.3 [82, Fig.56]
Intrinsic Permeability (mD) k 2845 [82, Fig.54]
Geothermal Gradient (°C/km) GT 25 [62, 47]
Geopressure Gradient (MPa/km) Gp 10 Assumed to be hydrostatic
Brine density (kg/m 3 ) Pw 1004 [2]
CO 2 density (kg/m 3 ) Pg 683 [14]
Brine viscosity (mPa s) Pw 0.53 [52]
CO 2 viscosity (mPa s) pg 0.055 [14]
Depth at well array (m) zw 1300
Fracture Overpressure (MPa) Pfrac 17.2
Compressibility (Pa- 1 ) c 1.7E-10 [87, Table C1]
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A.2 Lawson Formation and Cedar Keys Formation

Table A.2: Parameters for the Lawson and Cedar Keys Formation.

Parameter Symbol Value Data Source

Depth (m) z 1368 [34, Map clcedarkey]

Net Thickness (m) H 383 [34, Map c3cedarkeyg]
Length of Model Domain (km) Ld 147 Fig. 3-21b

Width of Well Array (km) W 155 Fig. 3-21b
Porosity 0 0.26 [36]
Caprock Slope 0 0.003 [34, Map clcedarkey]
Darcy Velocity (cm/yr) U 1.75 [60, Fig.60]
Intrinsic Permeability (mD) k 15 [27, quoted in [36]]

Geothermal Gradient (°C/km) GT 59 [24]
Geopressure Gradient (MPa/km) Gp 10 Assumed to be hydrostatic
Brine density (kg/m 3 ) Pw 963 [2]

CO 2 density (kg/m 3 ) pg 307 [14]
Brine viscosity (mPa s) Pw 0.30 [52]

CO 2 viscosity (mPa s) pg 0.027 [14]
Depth at well array (m) Zw 1500
Fracture Overpressure (MPa) Pfrac 8.5
Compressibility (Pa- ) c 5.84E-11 [87, Table C1]
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A.3 Mt. Simon Sandstone

A.3.1 Region a

Table A.3: Parameters for Region b of the Mt. Simon Sandstone.

Parameter Symbol Value Data Source

Depth (m) z 1920 [34, Map clmtsimong]
Net Thickness (m) H 417 [34, Map c3mtsimong]
Length of Model Domain (km) Ld 152 Fig. 3-29b
Width of Well Array (km) W 82 Fig. 3-29b
Porosity 0.14 [13, p.140]
Caprock Slope 0 0.007 [34, Map clmtsimong]
Darcy Velocity (cm/yr) U 1.3 [35]
Intrinsic Permeability (mD) k 52 [13, p.140]
Geothermal Gradient (oC/km) GT 20 [62, 47]
Geopressure Gradient (MPa/km) Gp 10 Assumed to be hydrostatic
Brine density (kg/m 3 ) Pw 992 [2]
CO 2 density (kg/m 3 ) pg 768 [14]
Brine viscosity (mPa s) Pw 0.44 [52]
CO 2 viscosity (mPa s) 1/g 0.067 [14]
Depth at well array (m) Zw 3000
Fracture Overpressure (MPa) Pfrac 39.6
Compressibility (Pa - 1) c 1.7E-10 [87, Table C1]
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A.3.2 Region b

Table A.4: Parameters for Region b of the Mt. Simon Sandstone.

Parameter Symbol Value Data Source

Depth (m) z 2667 [34, Map clmtsimong]

Net Thickness (m) H 317 [34, Map c3mtsimong]
Length of Model Domain (km) Ld 213 Fig. 3-29b
Width of Well Array (km) W 181 Fig. 3-29b
Porosity 0.14 [13, p.140]
Caprock Slope 0 0.012 [34, Map clmtsimong]
Darcy Velocity (cm/yr) U 5.1 [35]
Intrinsic Permeability (mD) k 52 [13, p.140]
Geothermal Gradient (oC/km) GT 20 [62, 47]
Geopressure Gradient (MPa/km) Gp 10 Assumed to be hydrostatic
Brine density (kg/m 3 ) pw 991 [2]

CO 2 density (kg/m 3 ) pg 769 [14]
Brine viscosity (mPa s) pw 0.42 [52]

CO 2 viscosity (mPa s) pg 0.068 [14]
Depth at well array (m) Zw 3450
Fracture Overpressure (MPa) Pfrac 45.5
Compressibility (Pa - 1) c 1.7E-10 [87, Table C1]
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A.3.3 Region c

Table A.5: Parameters for Region b of the Mt. Simon Sandstone.

Parameter Symbol Value Data Source

Depth (m) z 1383 [34, Map clmtsimong]
Net Thickness (m) H 45 [34, Map c3mtsimong]
Length of Model Domain (km) Ld 143 Fig. 3-29b
Width of Well Array (km) W 273 Fig. 3-29b
Porosity 0 0.14 [13, p.140]
Caprock Slope 0 -0.009 [34, Map clmtsimong]
Darcy Velocity (cm/yr) U 1.9 [35]
Intrinsic Permeability (mD) k 52 [13, p.1 4 0]
Geothermal Gradient (oC/km) GT 20 [62, 47]
Geopressure Gradient (MPa/km) Gp 10 Assumed to be hydrostatic
Brine density (kg/m 3 ) Pw 997 [2]
CO 2 density (kg/m 3 ) pg 743 [14]
Brine viscosity (mPa s) Aw 0.63 [52]
CO 2 viscosity (mPa s) 11g 0.064 [14]
Depth at well array zw 1600
Fracture Overpressure (MPa) Pfrac 21.1
Compressibility (Pa- 1) c 1.7E-10 [87, Table C1]
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A.4 Madison Limestone

A.4.1 Region a

Table A.6: Parameters for Region a of the Madison Limestone.

Parameter Symbol Value Data Source

Depth (m) z 1920 [34, Map clmadisong],[75, Fig.16]

Net Thickness (m) H 388 [16, Fig.ll], [75, Fig.16]

Length of Model Domain (km) Ld 105 Fig. 3-38b

Width of Well Array (km) W 139 Fig. 3-38b
Porosity ¢ 0.08 [16, Fig.35]
Caprock Slope 0 0.009 [34, Map c1madisong]
Darcy Velocity (cm/yr) U 4.7 [89, Fig.60]
Intrinsic Permeability (mD) k 16 [16, Fig.30]
Geothermal Gradient (oC/km) GT 40 [62, 47]

Geopressure Gradient (MPa/km) Gp 10 Assumed to be hydrostatic
Brine density (kg/m 3 ) Pw 975 [2]

CO 2 density (kg/m 3 ) pg 508 [14]
Brine viscosity (mPa s) pw 0.31 [52]

CO 2 viscosity (mPa s) pg 0.039 [14]
Depth at well array (m) zw 2200
Fracture Overpressure (MPa) Pfrac 29.0
Compressibility (Pa- 1) c 5.84E-11 [87, Table C1]
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A.4.2 Region b

Table A.7: Parameters for Region b of the Madison Limestone.

Parameter Symbol Value Data Source

Depth (m) z 2801 [34, Map clmadisong],[75, Fig.16]
Net Thickness (m) H 309 [16, Fig.11], [75, Fig.16]
Length of Model Domain (km) Ld 71 Fig. 3-38b
Width of Well Array (km) W 65 Fig. 3-38b
Porosity 0.08 [16, Fig.35]
Caprock Slope 0 0.003 [34, Map c1madisong]
Darcy Velocity (cm/yr) U 31 [89, Fig.60]
Intrinsic Permeability (mD) k 58 [16, Fig.30]
Geothermal Gradient (oC/km) GT 40 [62, 47]
Geopressure Gradient (MPa/km) Gp 10 Assumed to be hydrostatic
Brine density (kg/m 3 ) Pw 954 [2]
CO 2 density (kg/m 3 ) pg 535 [14]
Brine viscosity (mPa s) pw 0.22 [52]
CO 2 viscosity (mPa s) pg 0.042 [14]
Depth at well array (m) zw 2700
Fracture Overpressure (MPa) Pfrac 35.6
Compressibility (Pa- 1) c 5.84E-11 [87, Table C1]
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A.5 Frio Formation

A.5.1 Region a

Table A.8: Parameters for Region a of the Frio Formation.

Parameter Symbol Value Data Source

Depth (m) z 1400 [34, Map clfriog]

Net Thickness (m) H 350 [34, Map c4friosum]

Length of Model Domain (km) Ld 118 Fig. 3-44b

Width of Well Array (km) W 89 Fig. 3-44b

Porosity 0 0.22 [35]

Caprock Slope 0 0.015 [34, Map clfriog]

Darcy Velocity (cm/yr) U 310 [35]
Intrinsic Permeability (mD) k 500 [35][53, Fig.27]

Geothermal Gradient (oC/km) GT 35 [62, 47]

Geopressure Gradient (MPa/km) Gp 10 Assumed to be hydrostatic

Brine density (kg/m 3 ) Pw 988 [2]

CO 2 density (kg/m 3 ) pg 529 [14]
Brine viscosity (mPa s) pw 0.44 [52]

CO 2 viscosity (mPa s) pg 0.039 [14]
Depth at well array (m) zw 1600
Fracture Overpressure (MPa) Pfrac 9.1
Compressibility (Pa- 1) c 1.7E-10 [87, Table C1]
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A.5.2 Region b

Table A.9: Parameters for Region b of the Frio Formation.

Parameter Symbol Value Data Source

Depth (m) z 1467 [34, Map clfriog]
Net Thickness (m) H 350 [34, Map c4friosum]
Length of Model Domain (km) Ld 111 Fig. 3-44b
Width of Well Array (km) W 98 Fig. 3-44b
Porosity ¢ 0.28 [35]
Caprock Slope 0 0.016 [34, Map clfriog]
Darcy Velocity (cm/yr) U 203 [35]
Intrinsic Permeability (mD) k 500 [35][53, Fig.27]
Geothermal Gradient (°C/km) GT 35 [62, 47]
Geopressure Gradient (MPa/km) Gp 10 Assumed to be hydrostatic
Brine density (kg/m 3 ) Pw 987 [2]
CO 2 density (kg/m 3 ) pg 537 [14]
Brine viscosity (mPa s) Yw 0.43 [52]
CO 2 viscosity (mPa s) pg 0.040 [14]
Depth at well array (m) zw 1600
Fracture Overpressure (MPa) Pfrac 9.1
Compressibility (Pa-') c 1.7E-10 [87, Table C1]
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A.5.3 Region c

Table A.10: Parameters for Region c of the Frio Formation.

Parameter Symbol Value Data Source

Depth (m) z 1533 [34, Map clfriog]

Net Thickness (m) H 250 [34, Map c4friosum]

Length of Model Domain (km) Ld 121 Fig. 3-44b

Width of Well Array (km) W 112 Fig. 3-44b

Porosity 0.28 [35]

Caprock Slope 0 0.017 [34, Map clfriog]

Darcy Velocity (cm/yr) U 180 [35]
Intrinsic Permeability (mD) k 500 [35][53, Fig.27]
Geothermal Gradient (oC/km) GT 35 [62, 47]
Geopressure Gradient (MPa/km) Gp 10 Assumed to be hydrostatic

Brine density (kg/m 3 ) Pw 986 [2]

CO 2 density (kg/m 3 ) pg 544 [14]
Brine viscosity (mPa s) Pw 0.42 [52]

CO 2 viscosity (mPa s) Pg 0.041 [14]
Depth at well array (m) zw 2000

Fracture Overpressure (MPa) Pfrac 11.3
Compressibility (Pa-') c 1.7E-10 [87, Table C1]
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